RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. матем. журн., 2008, том 49, номер 4, страницы 837–854 (Mi smj1882)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями

А. А. Могульский

Институт математики им. С. Л. Соболева СО РАН

Аннотация: Получена интегро-локальная предельная теорема для сумм $S(n)=\xi(1)+\cdots+\xi(n)$ независимых случайных величин с общим распределением, правый хвост которого правильно меняется, т.е. имеет вид $\mathbf P(\xi\ge t)=t^{-\beta}L(t)$, $\beta>2$, $L(t)$ – медленно меняющаяся функция. Эта теорема описывает асимптотическое поведение для фиксированного $\Delta>0$ и при $x\to\infty$ вероятностей
$$ \mathbf P(S(n)\in[x,x+\Delta)) $$
на всей правой полуоси, т.е. в зоне, где действует нормальное приближение, в зоне, где распределение $S(n)$ аппроксимируется распределением максимального слагаемого, а также “на стыке” этих двух зон.

Ключевые слова: правильно меняющееся распределение, интегро-локальная теорема, интегральная теорема, теорема, действующая на всей полуоси, функция уклонений, большие уклонения, зона, где действует нормальное приближение, зона аппроксимации максимальным слагаемым.

Полный текст: PDF файл (373 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Siberian Mathematical Journal, 2008, 49:4, 669–683

Реферативные базы данных:

УДК: 519.21
Статья поступила: 16.01.2007
Окончательный вариант: 14.05.2007

Образец цитирования: А. А. Могульский, “Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями”, Сиб. матем. журн., 49:4 (2008), 837–854; Siberian Math. J., 49:4 (2008), 669–683

Цитирование в формате AMSBIB
\RBibitem{Mog08}
\by А.~А.~Могульский
\paper Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с~правильно меняющимися распределениями
\jour Сиб. матем. журн.
\yr 2008
\vol 49
\issue 4
\pages 837--854
\mathnet{http://mi.mathnet.ru/smj1882}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2456695}
\zmath{https://zbmath.org/?q=an:1164.60332}
\elib{http://elibrary.ru/item.asp?id=10429011}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 669--683
\crossref{https://doi.org/10.1007/s11202-008-0064-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000258913200010}
\elib{http://elibrary.ru/item.asp?id=13584085}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549083419}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/smj1882
  • http://mi.mathnet.ru/rus/smj/v49/i4/p837

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Боровков, А. А. Могульский, “Вероятности больших уклонений для сумм независимых случайных векторов на границе и вне крамеровской зоны. I”, Теория вероятн. и ее примен., 53:2 (2008), 336–344  mathnet  crossref  zmath; A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311  crossref  isi
    2. А. А. Могульский, “Интегральные и интегро-локальные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. электрон. матем. изв., 6 (2009), 251–271  mathnet  mathscinet  elib
    3. А. А. Боровков, К. А. Боровков, “Аналоги теоремы Блэкуелла для взвешенных функций восстановления”, Сиб. матем. журн., 55:4 (2014), 724–743  mathnet  mathscinet; A. A. Borovkov, K. A. Borovkov, “Blackwell-type theorems for weighted renewal functions”, Siberian Math. J., 55:4 (2014), 589–605  crossref  isi
    4. Delbaen F., Kowalski E., Nikeghbali A., “Mod-Phi Convergence”, Int. Math. Res. Notices, 2015, no. 11, 3445–3485  crossref  mathscinet  zmath  isi  elib  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Просмотров:
    Эта страница:193
    Полный текст:47
    Литература:25
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019