RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2007, Volume 48, Number 1, Pages 224–235 (Mi smj19)  

This article is cited in 3 scientific papers (total in 3 papers)

$c$-Semipermutable subgroups of finite groups

B. Huab, W. Guoab

a Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
b Department of Mathematics, Xuzhou Normal University, Xuzhou, P. R. China

Abstract: A subgroup is called $c$-semipermutable in $G$ if $A$ has a minimal supplement $T$ in $G$ such that for every subgroup $T_1$ of $T$ there is an element $x\in T$ satisfying $AT_1^x=T_1^xA$. We obtain a few results about the $c$-semipermutable subgroups and use them to determine the structures of some finite groups.

Keywords: finite group, $c$-semipermutable subgroup, maximal subgroups of Sylow subgroups, supersoluble group, $p$-nilpotent group.

Full text: PDF file (239 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2007, 48:1, 180–188

Bibliographic databases:

UDC: 512.54
Received: 24.08.2005

Citation: B. Hu, W. Guo, “$c$-Semipermutable subgroups of finite groups”, Sibirsk. Mat. Zh., 48:1 (2007), 224–235; Siberian Math. J., 48:1 (2007), 180–188

Citation in format AMSBIB
\Bibitem{HuGuo07}
\by B.~Hu, W.~Guo
\paper $c$-Semipermutable subgroups of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 224--235
\mathnet{http://mi.mathnet.ru/smj19}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2304891}
\zmath{https://zbmath.org/?q=an:1154.20023}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 180--188
\crossref{https://doi.org/10.1007/s11202-007-0019-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000244424100019}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846576541}


Linking options:
  • http://mi.mathnet.ru/eng/smj19
  • http://mi.mathnet.ru/eng/smj/v48/i1/p224

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dzhiankhong Khuang, Fengyan Khie, Khiolan Yui, “$S$-$C$-perestanovochno pogruzhennye podgruppy konechnykh grupp”, PFMT, 2010, no. 3(4), 41–48  mathnet
    2. Li B., “On Pi-property and Pi-normality of subgroups of finite groups”, J Algebra, 334:1 (2011), 321–337  crossref  mathscinet  zmath  isi  elib  scopus
    3. X. Chen, W. Guo, A. N. Skiba, “$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups”, Algebra and Logic, 54:3 (2015), 226–244  mathnet  crossref  crossref  mathscinet  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:196
    Full text:56
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020