|
This article is cited in 13 scientific papers (total in 13 papers)
Absolute continuity of the Sobolev type functions on metric spaces
A. S. Romanov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
Under study is the absolute continuity of the functions satisfying the Poincaré inequality on $s$-regular metric spaces.
Keywords:
absolute continuity, Lorentz space, Poincaré inequality.
Full text:
PDF file (310 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2008, 49:5, 911–918
Bibliographic databases:
UDC:
517.51 Received: 29.12.2007
Citation:
A. S. Romanov, “Absolute continuity of the Sobolev type functions on metric spaces”, Sibirsk. Mat. Zh., 49:5 (2008), 1147–1156; Siberian Math. J., 49:5 (2008), 911–918
Citation in format AMSBIB
\Bibitem{Rom08}
\by A.~S.~Romanov
\paper Absolute continuity of the Sobolev type functions on metric spaces
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 5
\pages 1147--1156
\mathnet{http://mi.mathnet.ru/smj1909}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2469060}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 5
\pages 911--918
\crossref{https://doi.org/10.1007/s11202-008-0089-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000259921800016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53649110862}
Linking options:
http://mi.mathnet.ru/eng/smj1909 http://mi.mathnet.ru/eng/smj/v49/i5/p1147
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Wildrick K., Zurcher T., “Space filling with metric measure spaces”, Math Z, 270:1–2 (2012), 103–131
-
Korobkov M.V., Kristensen J., “on the Morse-Sard Theorem For the Sharp Case of Sobolev Mappings”, Indiana Univ. Math. J., 63:6 (2014), 1703–1724
-
Zurcher T., “Space-Filling Vs. Luzin'S Condition (N)”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 39:2 (2014), 831–857
-
A. S. Romanov, “O nepreryvnosti sobolevskikh funktsii na giperploskostyakh”, Sib. elektron. matem. izv., 12 (2015), 832–841
-
Wildrick K., Zurcher T., “Sharp Differentiability Results For the Lower Local Lipschitz Constant and Applications To Non-Embedding”, J. Geom. Anal., 25:4 (2015), 2590–2616
-
Maly L., “Fine Properties of Newtonian Functions and the Sobolev Capacity on Metric Measure Spaces”, Rev. Mat. Iberoam., 32:1 (2016), 219–255
-
A. S. Romanov, “O gelderovosti sobolevskikh funktsii na giperpoverkhnostyakh”, Sib. elektron. matem. izv., 13 (2016), 624–634
-
Hajlasz P., Korobkov M.V., Kristensen J., “a Bridge Between Dubovitskii-Federer Theorems and the Coarea Formula”, J. Funct. Anal., 272:3 (2017), 1265–1295
-
A. S. Romanov, “Absolute continuity of functions in Sobolev spaces and modules of families of hypersurfaces elated to the Lorentz spaces”, J. Math. Sci., 231:2 (2018), 255–266
-
Korobkov M.V., Kristensen J., “The Trace Theorem, the Luzin N- and Morse-Sard Properties For the Sharp Case of Sobolev-Lorentz Mappings”, J. Geom. Anal., 28:3 (2018), 2834–2856
-
A. Ferone, M. V. Korobkov, A. Roviello, “The Morse–Sard theorem and Luzin $N$-property: a new synthesis for smooth and Sobolev mappings”, Siberian Math. J., 60:5 (2019), 916–926
-
Zhou X., “Absolutely Continuous Functions on Compact and Connected 1-Dimensional Metric Spaces”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 44 (2019), 281–291
-
Ferone A., Korobkov V M., Roviello A., “on the Luzin N-Property and the Uncertainty Principle For Sobolev Mappings”, Anal. PDE, 12:5 (2019), 1149–1175
|
Number of views: |
This page: | 224 | Full text: | 89 | References: | 21 | First page: | 2 |
|