RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2008, Volume 49, Number 6, Pages 1381–1390 (Mi smj1927)  

This article is cited in 1 scientific paper (total in 1 paper)

Enumeration of maximal subalgebras in free restricted Lie algebras

V. M. Petrogradsky, A. A. Smirnov

Ulyanovsk State University, Faculty of Mathematics and Information Technologies

Abstract: Given a finitely generated restricted Lie algebra $L$ over the finite field $\mathbb F_q$, and $n\ge0$, denote by $a_n(L)$ the number of restricted subalgebras $H\subseteq L$ with $\dim_{\mathbb F_q}L/H=n$. Denote by $\widetilde a_n(L)$ the number of the subalgebras satisfying the maximality condition as well. Considering the free restricted Lie algebra $L=F_d$ of rank $d\ge2$, we find the asymptotics of $\widetilde a_n(F_d)$ and show that it coincides with the asymptotics of $a_n(F_d)$ which was found previously by the first author. Our approach is based on studying the actions of restricted algebras by derivations on the truncated polynomial rings. We establish that the maximal subalgebras correspond to the so-called primitive actions. This means that “almost all” restricted subalgebras $H\subset F_d$ of finite codimension are maximal, which is analogous to the corresponding results for free groups and free associative algebras.

Keywords: restricted Lie algebra, Witt algebra, coalgebras, enumerative combinatorics, subgroup growth.

Full text: PDF file (330 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2008, 49:6, 1101–1108

Bibliographic databases:

UDC: 512.55
Received: 05.04.2007

Citation: V. M. Petrogradsky, A. A. Smirnov, “Enumeration of maximal subalgebras in free restricted Lie algebras”, Sibirsk. Mat. Zh., 49:6 (2008), 1381–1390; Siberian Math. J., 49:6 (2008), 1101–1108

Citation in format AMSBIB
\Bibitem{PetSmi08}
\by V.~M.~Petrogradsky, A.~A.~Smirnov
\paper Enumeration of maximal subalgebras in free restricted Lie algebras
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 6
\pages 1381--1390
\mathnet{http://mi.mathnet.ru/smj1927}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2499108}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 6
\pages 1101--1108
\crossref{https://doi.org/10.1007/s11202-008-0106-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261792400015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57749198261}


Linking options:
  • http://mi.mathnet.ru/eng/smj1927
  • http://mi.mathnet.ru/eng/smj/v49/i6/p1381

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Petrogradsky, I. A. Subbotin, “Ideal growth in metabelian Lie $p$-algebras”, Siberian Math. J., 56:4 (2015), 714–724  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:144
    Full text:44
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020