|
This article is cited in 3 scientific papers (total in 3 papers)
Computing the test rank of a free solvable Lie algebra
E. I. Timoshenkoa, M. A. Shevelinb a Novosibirsk State University of Architecture and Civil Engineering
b Omsk State University
Abstract:
We computed the test rank of a free solvable Lie algebra of finite rank.
Keywords:
solvable Lie algebra, test rank.
Full text:
PDF file (288 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2008, 49:6, 1131–1135
Bibliographic databases:
UDC:
517.55 Received: 30.05.2007
Citation:
E. I. Timoshenko, M. A. Shevelin, “Computing the test rank of a free solvable Lie algebra”, Sibirsk. Mat. Zh., 49:6 (2008), 1420–1426; Siberian Math. J., 49:6 (2008), 1131–1135
Citation in format AMSBIB
\Bibitem{TimShe08}
\by E.~I.~Timoshenko, M.~A.~Shevelin
\paper Computing the test rank of a~free solvable Lie algebra
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 6
\pages 1420--1426
\mathnet{http://mi.mathnet.ru/smj1929}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2499111}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 6
\pages 1131--1135
\crossref{https://doi.org/10.1007/s11202-008-0109-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261792400018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57749188083}
Linking options:
http://mi.mathnet.ru/eng/smj1929 http://mi.mathnet.ru/eng/smj/v49/i6/p1420
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Ekici N., Oguslu N.S., “Test rank of an abelian product of a free Lie algebra and a free abelian Lie algebra”, Proc Indian Acad Sci Math Sci, 121:3 (2011), 291–300
-
Oguslu N.S., “Test Rank of the Lie Algebra F/[R `, F]”, J. Algebra. Appl., 13:4 (2014), 1350122
-
Oguslu N.S. Ekici N., “the Test Rank of a Solvable Product of Free Abelian Lie Algebras”, J. Algebra. Appl., 18:2 (2019), 1950025
|
Number of views: |
This page: | 178 | Full text: | 77 | References: | 29 | First page: | 2 |
|