General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Sibirsk. Mat. Zh.:

Search through the site:

Personal entry:
Save password
Forgotten password?

Sibirsk. Mat. Zh., 2009, Volume 50, Number 2, Pages 446–452 (Mi smj1971)  

This article is cited in 10 scientific papers (total in 10 papers)

Quasirecognition by prime graph of $L_{10}(2)$

B. Khosravi

Dept. of Pure Math., Faculty of Math. and Computer Sci., Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract: Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. The main result we prove is as follows: If $G$ is a inite group such that $\Gamma(G)=\Gamma(L_{10}(2))$ then $G/O_2(G)$ is isomorphic to $L_{10}(2)$. In fact we obtain the first example of a finite group with the connected prime graph which is quasirecognizable by its prime graph. As a consequence of this result we can give a new proof for the fact that the simple group $L_{10}(2)$ is uniquely determined by the set of its element orders.

Keywords: prime graph, finite group, projective special linear group.

Full text (in Russian): PDF file (294 kB)
References (in Russian): PDF file   HTML файл

English version:
Siberian Mathematical Journal, 2009, 50:2, 355–359

Bibliographic databases:

UDC: 512.542
Received: 03.10.2007

Citation: B. Khosravi, “Quasirecognition by prime graph of $L_{10}(2)$”, Sibirsk. Mat. Zh., 50:2 (2009), 446–452

Citation in format AMSBIB
\by B.~Khosravi
\paper Quasirecognition by prime graph of~$L_{10}(2)$
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 2
\pages 446--452
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 2
\pages 355--359

Linking options:

    SHARE: FaceBook Twitter Liveinternet Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Khosravi B., Moradi H., “Quasirecognition by prime graph of finite simple groups $L_n(2)$ and $U_n(2)$”, Acta Math. Hungar., 132:1-2 (2011), 140–153  crossref  mathscinet  zmath
    2. Khosravi B., Akhlaghi Z., Khatami M., “Quasirecognition by prime graph of simple group $D_n(3)$”, Publ. Math. Debrecen, 78:2 (2011), 469–484  crossref  mathscinet
    3. Ghasemabadi M.F., Iranmanesh A., “Quasirecognition by the prime graph of the group $C_n(2)$, where $n \ne 3$ is odd”, Bull. Malays. Math. Sci. Soc. (2), 34:3 (2011), 529–540  mathscinet  zmath
    4. Ghasemabadi M.F. Iranmanesh A., “2-Quasirecognizability of the Simple Groups B-N(P) and C-N(P) by Prime Graph”, Bull. Iran Math. Soc., 38:3 (2012), 647–668  mathscinet
    5. Nosratpour P., Darafsheh M.R., “Recognition of the Groups l (5)(4) and U (4)(4) by the Prime Graph”, Ukr. Math. J., 64:2 (2012), 238–246  crossref  zmath
    6. Babai A. Khosravi B., “On the Composition Factors of a Group with the Same Prime Graph as B (N) (5)”, Czech. Math. J., 62:2 (2012), 469–486  crossref  mathscinet  zmath
    7. Khosravi B. Moradi H., “Quasirecognition by Prime Graph of Some Orthogonal Groups Over the Binary Field”, J. Algebra. Appl., 11:3 (2012), 1250056  crossref  mathscinet  zmath  elib
    8. З. Момен, Б. Хосрави, “Группы с тем же графом простых чисел, что и ортогональная группа $B_n(3)$”, Сиб. матем. журн., 54:3 (2013), 620–636  mathnet  mathscinet; Z. Momen, B. Khosravi, “Groups with the same prime graph as the orthogonal group $B_n(3)$”, Siberian Math. J., 54:3 (2013), 487–500  crossref
    9. Amiri S.S.S. Asboei A.R.Kh. Iranmanesh A. Tehranian A., “Quasirecognition by the Prime Graph of l-3(G) Where 3 < Q < 100”, Bull. Iran Math. Soc., 39:2 (2013), 289–305
    10. А. Бабаи, Б. Хосрави, “Квазираспознаваемость $^2D_{n}(3^\alpha)$ по графу простых чисел при $n=4m+1\ge 21$ и нечетном $\alpha$”, Матем. заметки, 95:3 (2014), 323–334  mathnet  crossref; A. Babai, B. Khosravi, “Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and $\alpha$ is Odd”, Math. Notes, 95:3 (2014), 293–303  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:125
    Full text:27
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2015