RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2009, Volume 50, Number 3, Pages 526–546 (Mi smj1979)  

Stability of mappings with bounded distortion in the Sobolev norm on the John domains of Heisenberg groups

D. V. Isangulova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: This article completes the authors's series on stability in the Liouville theorem on the Heisenberg group. We show that every mapping with bounded distortion on a John domain of the Heisenberg group is approximated by a conformal mapping with order of closeness $\sqrt{K-1}$ in the uniform norm and with order of closeness $K-1$ in the Sobolev $L^1_p$-norm for all $p<\frac C{K-1}$. We construct two examples, demonstrating the asymptotic sharpness of our results.

Keywords: Heisenberg group, mapping with bounded distortion, John domain, Möbius transformation.

Full text: PDF file (439 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2009, 50:3, 415–433

Bibliographic databases:

UDC: 517.54
Received: 11.10.2005

Citation: D. V. Isangulova, “Stability of mappings with bounded distortion in the Sobolev norm on the John domains of Heisenberg groups”, Sibirsk. Mat. Zh., 50:3 (2009), 526–546; Siberian Math. J., 50:3 (2009), 415–433

Citation in format AMSBIB
\Bibitem{Isa09}
\by D.~V.~Isangulova
\paper Stability of mappings with bounded distortion in the Sobolev norm on the John domains of Heisenberg groups
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 3
\pages 526--546
\mathnet{http://mi.mathnet.ru/smj1979}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2555879}
\elib{http://elibrary.ru/item.asp?id=12941118}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 3
\pages 415--433
\crossref{https://doi.org/10.1007/s11202-009-0048-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000266951900005}
\elib{http://elibrary.ru/item.asp?id=13616056}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650482371}


Linking options:
  • http://mi.mathnet.ru/eng/smj1979
  • http://mi.mathnet.ru/eng/smj/v50/i3/p526

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:175
    Full text:56
    References:20
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020