RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2009, Volume 50, Number 4, Pages 746–756 (Mi smj1996)  

This article is cited in 7 scientific papers (total in 7 papers)

On the structure of the spectrum for the elasticity problem in a body with a supersharp spike

F. L. Bakhareva, S. A. Nazarovb

a St. Petersburg State University, Faculty of Mathematics and Mechanics, St. Petersburg
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg

Abstract: We establish that the continuous spectrum of the Neumann problem for the system of elasticity equations occupies the entire closed positive real semiaxis in the case that a three-dimensional body with a sharp-spiked cusp whose cross-section contracts to a point with the velocity $O(r^{1+\gamma})$, where $r$ is the distance to the vertex of the spike and $\gamma>1$ is the sharpness exponent.

Keywords: system of elasticity equations, spike, cusp, peak, continuous spectrum.

Full text: PDF file (315 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2009, 50:4, 587–595

Bibliographic databases:

UDC: 517.984.5:517.958:539(4)
Received: 30.09.2008

Citation: F. L. Bakharev, S. A. Nazarov, “On the structure of the spectrum for the elasticity problem in a body with a supersharp spike”, Sibirsk. Mat. Zh., 50:4 (2009), 746–756; Siberian Math. J., 50:4 (2009), 587–595

Citation in format AMSBIB
\Bibitem{BakNaz09}
\by F.~L.~Bakharev, S.~A.~Nazarov
\paper On the structure of the spectrum for the elasticity problem in a~body with a~supersharp spike
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 746--756
\mathnet{http://mi.mathnet.ru/smj1996}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2583612}
\elib{http://elibrary.ru/item.asp?id=12941135}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 587--595
\crossref{https://doi.org/10.1007/s11202-009-0065-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000268837600003}
\elib{http://elibrary.ru/item.asp?id=15306744}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349975614}


Linking options:
  • http://mi.mathnet.ru/eng/smj1996
  • http://mi.mathnet.ru/eng/smj/v50/i4/p746

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Cardone G., Nazarov S.A., Taskinen J., “A criterion for the existence of the essential spectrum for beak-shaped elastic bodies”, J. Math. Pures Appl. (9), 92:6 (2009), 628–650  crossref  mathscinet  zmath  isi  scopus
    2. Campbell A., Nazarov S.A., Sweers G.H., “Spectra of two-dimensional models for thin plates with sharp edges”, SIAM J. Math. Anal., 42:6 (2010), 3020–3044  crossref  mathscinet  zmath  isi  elib  scopus
    3. Nazarov S.A., Taskinen J., “Radiation conditions at the top of a rotational cusp in the theory of water-waves”, ESAIM Math. Model. Numer. Anal., 45:5 (2011), 947–979  crossref  mathscinet  zmath  isi  scopus
    4. Kamotski I.V., Maz'ya V.G., “On the Linear Water Wave Problem in the Presence of a Critically Submerged Body”, SIAM J. Math. Anal., 44:6 (2012), 4222–4249  crossref  mathscinet  zmath  isi  elib  scopus
    5. Chesnel L., Claeys X., Nazarov S.A., “a Curious Instability Phenomenon For a Rounded Corner in Presence of a Negative Material”, Asymptotic Anal., 88:1-2 (2014), 43–74  crossref  mathscinet  zmath  isi  elib  scopus
    6. Martin J., Nazarov S.A., Taskinen J., “Spectrum of the Linear Water Model For a Two-Layer Liquid With Cuspidal Geometries At the Interface”, ZAMM-Z. Angew. Math. Mech., 95:8 (2015), 859–876  crossref  mathscinet  zmath  isi  elib  scopus
    7. Kozlov V., Nazarov S.A., “on the Spectrum of An Elastic Solid With Cusps”, Adv. Differ. Equat., 21:9-10 (2016), 887–944  mathscinet  zmath  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:249
    Full text:59
    References:42
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019