|
This article is cited in 2 scientific papers (total in 2 papers)
The integral analog of a series with a two-point sum range
O. S. Osipov Tomsk State University, Tomsk
Abstract:
We consider an improper integral corresponding to the series with a two-point sum range which was constructed by Kornilov in the space of integrable functions. We verify that the sum range of the integral is equal to the set of all constant functions.
Keywords:
rearrangement of a series, rearrangement of an integral, Lebesgue–Bochner integral, sum range of a series, sum range of an improper integral.
Full text:
PDF file (284 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2009, 50:6, 1062–1069
Bibliographic databases:
UDC:
517.521 Received: 03.04.2008 Revised: 16.09.2009
Citation:
O. S. Osipov, “The integral analog of a series with a two-point sum range”, Sibirsk. Mat. Zh., 50:6 (2009), 1348–1355; Siberian Math. J., 50:6 (2009), 1062–1069
Citation in format AMSBIB
\Bibitem{Osi09}
\by O.~S.~Osipov
\paper The integral analog of a~series with a~two-point sum range
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 6
\pages 1348--1355
\mathnet{http://mi.mathnet.ru/smj2054}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2603875}
\elib{https://elibrary.ru/item.asp?id=13072731}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 6
\pages 1062--1069
\crossref{https://doi.org/10.1007/s11202-009-0117-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000273176200014}
\elib{https://elibrary.ru/item.asp?id=15312693}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549198709}
Linking options:
http://mi.mathnet.ru/eng/smj2054 http://mi.mathnet.ru/eng/smj/v50/i6/p1348
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. G. Lazareva, O. S. Osipov, “Integralnye analogi ryadov v banakhovykh prostranstvakh”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2010, no. 3(11), 29–37
-
Charatonik W.J., Samulewicz A., Witula R., “Limit Sets in Normed Linear Spaces”, Colloq. Math., 147:1 (2017), 35–42
|
Number of views: |
This page: | 153 | Full text: | 41 | References: | 29 |
|