|
This article is cited in 14 scientific papers (total in 14 papers)
0-dialgebras with bar-unity and nonassociative Rota–Baxter algebras
A. P. Pozhidaev Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
We describe all homogeneous structures of Rota–Baxter algebras on a 0-dialgebra with associative bar-unity and give a corollary on the structure of a Rota–Baxter algebra on an arbitrary associative dialgebra with bar-unity as well as a unital associative conformal algebra. We prove that an arbitrary alternative dialgebra may be embedded into an alternative dialgebra with associative barunity. We suggest the definition of variety of dialgebras in the sense of Eilenberg which is equivalent to that introduced earlier by Kolesnikov.
Keywords:
dialgebra, bar-unity, adjoining a bar-unity, Rota–Baxter algebra, enveloping algebra, conformal algebra, alternative dialgebra, variety of dialgebras, unital variety.
Full text:
PDF file (341 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2009, 50:6, 1070–1080
Bibliographic databases:
UDC:
512.57 Received: 28.12.2008 Revised: 07.07.2009
Citation:
A. P. Pozhidaev, “0-dialgebras with bar-unity and nonassociative Rota–Baxter algebras”, Sibirsk. Mat. Zh., 50:6 (2009), 1356–1369; Siberian Math. J., 50:6 (2009), 1070–1080
Citation in format AMSBIB
\Bibitem{Poz09}
\by A.~P.~Pozhidaev
\paper 0-dialgebras with bar-unity and nonassociative Rota--Baxter algebras
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 6
\pages 1356--1369
\mathnet{http://mi.mathnet.ru/smj2055}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2603876}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 6
\pages 1070--1080
\crossref{https://doi.org/10.1007/s11202-009-0118-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000273176200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549130050}
Linking options:
http://mi.mathnet.ru/eng/smj2055 http://mi.mathnet.ru/eng/smj/v50/i6/p1356
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Anatolii V. Zhuchok, “Semilattices of $r$-archimedean subdimonoids”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 3, 108–112
-
Anatolii V. Zhuchok, “Free rectangular dibands and free dimonoids”, Algebra Discrete Math., 11:2 (2011), 92–111
-
A. V. Zhuchok, “Dekompozitsii svobodnykh dimonoidov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2012, 93–100
-
Yurii V. Zhuchok, “The endomorphism semigroup of a free dimonoid of rank 1”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 3, 30–37
-
Yuliia V. Zhuchok, “On one class of algebras”, Algebra Discrete Math., 18:2 (2014), 306–320
-
Bremner M.R. Sanchez-Ortega J., “Leibniz Triple Systems”, Commun. Contemp. Math., 16:1 (2014), 1350051
-
A. V. Zhuchok, Yu. V. Zhuchok, “Free commutative $g$-dimonoids”, Chebyshevskii sb., 16:3 (2015), 276–284
-
A. V. Zhuchok, “Dimonoids and bar-units”, Siberian Math. J., 56:5 (2015), 827–840
-
Yurii V. Zhuchok, “Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid”, Algebra Discrete Math., 21:2 (2016), 309–324
-
Zhang G. Chen Yu., “a New Composition-Diamond Lemma For Dialgebras”, Algebr. Colloq., 24:2 (2017), 323–350
-
Zhuchok A.V., “Structure of Relatively Free Dimonoids”, Commun. Algebr., 45:4 (2017), 1639–1656
-
Benito P. Gubarev V. Pozhidaev A., “Rota-Baxter Operators on Quadratic Algebras”, Mediterr. J. Math., 15:5 (2018), 189
-
A. P. Pozhidaev, “On the Cayley–Dickson process for dialgebras”, Sib. elektron. matem. izv., 16 (2019), 2110–2123
-
Chen Yu. Zhang G., “Grobner-Shirshov Bases For Commutative Dialgebras”, Commun. Algebr., 47:4 (2019), 1671–1689
|
Number of views: |
This page: | 264 | Full text: | 99 | References: | 50 |
|