RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2010, Volume 51, Number 3, Pages 649–661 (Mi smj2115)  

$\Sigma$-definability of uncountable models of $c$-simple theories

A. I. Stukachevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk

Abstract: We show that each $c$-simple theory with an additional discreteness condition has an uncountable model $\Sigma$-definable in $\mathbb{HF}(\mathbb L)$, where $\mathbb L$ is a dense linear order. From this we establish the same for all $c$-simple theories of finite signature that are submodel complete.

Keywords: computable theory, model theory, constructive model, admissible set.

Full text: PDF file (357 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2010, 51:3, 515–524

Bibliographic databases:

UDC: 510.5
Received: 08.12.2008

Citation: A. I. Stukachev, “$\Sigma$-definability of uncountable models of $c$-simple theories”, Sibirsk. Mat. Zh., 51:3 (2010), 649–661; Siberian Math. J., 51:3 (2010), 515–524

Citation in format AMSBIB
\Bibitem{Stu10}
\by A.~I.~Stukachev
\paper $\Sigma$-definability of uncountable models of $c$-simple theories
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 649--661
\mathnet{http://mi.mathnet.ru/smj2115}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2722678}
\zmath{https://zbmath.org/?q=an:1209.03030}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 515--524
\crossref{https://doi.org/10.1007/s11202-010-0054-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279087500016}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953976351}


Linking options:
  • http://mi.mathnet.ru/eng/smj2115
  • http://mi.mathnet.ru/eng/smj/v51/i3/p649

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:199
    Full text:52
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019