Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2011, Volume 52, Number 5, Pages 962–976 (Mi smj2250)  

This article is cited in 5 scientific papers (total in 5 papers)

The integral geometry boundary determination problem for a pencil of straight lines

D. S. Anikonov, D. S. Konovalova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: Under consideration is the problem of integrating finitely many functions over straight lines. Each function as well as the corresponding line is assumed unknown. The available information is the sum of integrals over all straight lines of a family of pencils in each of which the intersection of lines is a point of a given bounded open set in a finite-dimensional Euclidean space. Each integrand depends on a greater number of variables than the sum of the integrals. Hence, the conventional statement of the problem of determining the integrands becomes underspecified. In this situation we pose and study the problem of determining the discontinuity surfaces of the integrands. The uniqueness theorem is proven under the condition that these surfaces exist. The present article is a refinement of the previous studies of the authors and differs from them in [1–6] by not only some technical improvements but also the principally new fact that the integration is performed over an unknown set.

Keywords: singular integral, integral geometry, unknown boundary.

Full text: PDF file (330 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2011, 52:5, 763–775

Bibliographic databases:

UDC: 517.958
Received: 26.08.2010

Citation: D. S. Anikonov, D. S. Konovalova, “The integral geometry boundary determination problem for a pencil of straight lines”, Sibirsk. Mat. Zh., 52:5 (2011), 962–976; Siberian Math. J., 52:5 (2011), 763–775

Citation in format AMSBIB
\Bibitem{AniKon11}
\by D.~S.~Anikonov, D.~S.~Konovalova
\paper The integral geometry boundary determination problem for a~pencil of straight lines
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 5
\pages 962--976
\mathnet{http://mi.mathnet.ru/smj2250}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2908119}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 5
\pages 763--775
\crossref{https://doi.org/10.1134/S0037446611050016}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298650500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155151878}


Linking options:
  • http://mi.mathnet.ru/eng/smj2250
  • http://mi.mathnet.ru/eng/smj/v52/i5/p962

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Romanov, “Recovering jumps in X-ray tomography”, J. Appl. Industr. Math., 8:4 (2014), 582–593  mathnet  crossref  mathscinet
    2. Romanov V.G., “Reconstruction of Discontinuities in a Problem of Integral Geometry”, Dokl. Math., 90:3 (2014), 758–761  crossref  mathscinet  zmath  isi  elib  scopus
    3. D. S. Anikonov, D. S. Konovalova, “An integral geometry underdetermined problem for a family of curves”, Siberian Math. J., 56:2 (2015), 217–230  mathnet  crossref  mathscinet  isi  elib  elib
    4. Anikonov D.S. Konovalova D.S., “a Problem of Integral Geometry For a Family of Curves With Incomplete Data”, Dokl. Math., 92:2 (2015), 521–524  crossref  mathscinet  zmath  isi  elib  scopus
    5. Nedergaard J.L., “Role Differences in Healthcare: Overcoming Borders Through Semiotic Skin Is the Basis For Communication”, Integr. Psychol. Behav. Sci., 53:2 (2019), 283–297  crossref  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:230
    Full text:63
    References:35
    First page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021