|
This article is cited in 4 scientific papers (total in 4 papers)
Universal equivalence of partially commutative nilpotent groups
A. A. Mishchenkoa, E. I. Timoshenkob a Omsk Branch of the Sobolev Institute of Mathematics, Omsk, Russia
b Novosibirsk State Technical University, Novosibirsk, Russia
Abstract:
We prove some necessary and sufficient conditions of the universal equivalence of the nilpotent $R$-groups of class 2 defined by trees, with $R$ a binomial Euclidean ring.
Keywords:
universal equivalence, partially commutative group, binomial ring, Euclidean ring.
Full text:
PDF file (326 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2011, 52:5, 884–891
Bibliographic databases:
UDC:
512.5 Received: 12.07.2010
Citation:
A. A. Mishchenko, E. I. Timoshenko, “Universal equivalence of partially commutative nilpotent groups”, Sibirsk. Mat. Zh., 52:5 (2011), 1113–1122; Siberian Math. J., 52:5 (2011), 884–891
Citation in format AMSBIB
\Bibitem{MisTim11}
\by A.~A.~Mishchenko, E.~I.~Timoshenko
\paper Universal equivalence of partially commutative nilpotent groups
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 5
\pages 1113--1122
\mathnet{http://mi.mathnet.ru/smj2262}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2908131}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 5
\pages 884--891
\crossref{https://doi.org/10.1134/S0037446611050132}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298650500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155150438}
Linking options:
http://mi.mathnet.ru/eng/smj2262 http://mi.mathnet.ru/eng/smj/v52/i5/p1113
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Ch. K. Gupta, E. I. Timoshenko, “Properties and universal theories for partially commutative nilpotent metabelian groups”, Algebra and Logic, 51:4 (2012), 285–305
-
E. I. Bunina, G. A. Kaleeva, “Universal equivalence of general and special linear groups over fields”, J. Math. Sci., 237:3 (2019), 387–409
-
E. I. Timoshenko, “Centralizer dimensions and universal theories for partially commutative metabelian groups”, Algebra and Logic, 56:2 (2017), 149–170
-
E. N. Poroshenko, “Universal equivalence of some countably generated partially commutative structures”, Siberian Math. J., 58:2 (2017), 296–304
|
Number of views: |
This page: | 171 | Full text: | 54 | References: | 26 | First page: | 1 |
|