RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2011, Volume 52, Number 6, Pages 1221–1233 (Mi smj2269)  

This article is cited in 3 scientific papers (total in 3 papers)

On finite symmetry groups of some models of three-dimensional quasicrystals

V. A. Artamonova, S. Sánchezb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow
b Universidad Rey Juan Carlos, Madrid (Spain)

Abstract: We give a full description of the finite symmetry groups of the cut-and-project model for three-dimensional quasicrystals under the assumption that the phase space dimension is at most 3.

Keywords: crystallographic group, quasicrystal, symmetry group, cut-and-project model.

Full text: PDF file (341 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2011, 52:6, 969–979

Bibliographic databases:

UDC: 512.94.3+51-72
Received: 17.09.2010
Revised: 11.08.2011

Citation: V. A. Artamonov, S. Sánchez, “On finite symmetry groups of some models of three-dimensional quasicrystals”, Sibirsk. Mat. Zh., 52:6 (2011), 1221–1233; Siberian Math. J., 52:6 (2011), 969–979

Citation in format AMSBIB
\Bibitem{ArtSan11}
\by V.~A.~Artamonov, S.~S\'anchez
\paper On finite symmetry groups of some models of three-dimensional quasicrystals
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 6
\pages 1221--1233
\mathnet{http://mi.mathnet.ru/smj2269}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961750}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 6
\pages 969--979
\crossref{https://doi.org/10.1134/S0037446611060024}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298650800002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855175230}


Linking options:
  • http://mi.mathnet.ru/eng/smj2269
  • http://mi.mathnet.ru/eng/smj/v52/i6/p1221

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Madison A.E., “Symmetry of Quasicrystals”, Phys. Solid State, 55:4 (2013), 855–867  crossref  isi  elib  scopus
    2. Astapov Yu., Khristich D., Markin A., Sokolova M., “The Construction of Nonlinear Elasticity Tensors For Crystals and Quasicrystals”, Int. J. Appl. Mech., 9:6 (2017), 1750080  crossref  mathscinet  isi  scopus
    3. Prokhoda A.S., “About Crystal Lattices and Quasilattices in Euclidean Space”, Crystallogr. Rep., 62:4 (2017), 505–510  crossref  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:240
    Full text:64
    References:32
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019