|
This article is cited in 3 scientific papers (total in 3 papers)
Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits
R. Oĭnarov L. N. Gumilev Eurasian National University, Astana, Kazakhstan
Abstract:
Considering the integral operators with nonnegative kernels and variable integration limits, we obtain criteria of boundedness and compactness in weighted Lebesgue spaces under some conditions on the kernels that are weaker than those studied before.
Keywords:
integral operator with variable integration limits, Lebesgue space, boundedness, compactness.
Full text:
PDF file (341 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2011, 52:6, 1042–1055
Bibliographic databases:
UDC:
517.51 Received: 28.10.2010
Citation:
R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Sibirsk. Mat. Zh., 52:6 (2011), 1313–1328; Siberian Math. J., 52:6 (2011), 1042–1055
Citation in format AMSBIB
\Bibitem{Oin11}
\by R.~O{\v\i}narov
\paper Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 6
\pages 1313--1328
\mathnet{http://mi.mathnet.ru/smj2276}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961757}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 6
\pages 1042--1055
\crossref{https://doi.org/10.1134/S0037446611060097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298650800009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855163240}
Linking options:
http://mi.mathnet.ru/eng/smj2276 http://mi.mathnet.ru/eng/smj/v52/i6/p1313
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Math., 78:4 (2014), 836–853
-
Kalybay A. Persson L.-E. Temirkhanova A., “a New Discrete Hardy-Type Inequality With Kernels and Monotone Functions”, J. Inequal. Appl., 2015, 321
-
A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative
and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272
|
Number of views: |
This page: | 291 | Full text: | 81 | References: | 37 | First page: | 10 |
|