|
This article is cited in 7 scientific papers (total in 7 papers)
Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$
M. Sh. Shabozova, G. A. Yusupovb a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe, Tajikistan
b Tajik National University, Dushanbe, Tajikistan
Abstract:
We find the exact values of the $n$-widths for the classes of periodic differentiable functions in $L_2[0,2\pi]$, satisfying the constraint
$$
\int_0^ht\widetilde\Omega_m^{1/m}(f^{(r)};t) dt\le\Phi(h),
$$
where $h>0$, $m\in\mathbb N$, $r\in\mathbb Z_+$, $\widetilde\Omega_m^{1/m}(f^{(r)};t)$ is the generalized $m$th order continuity modulus of the derivative $f^{(r)}\in L_2[0,2\pi]$, while $\Phi(t)$ is an arbitrary increasing function such that $\Phi(0)=0$.
Keywords:
space of square integrable functions, best approximation, extremal characteristic, generalized continuity modulus, width.
Full text:
PDF file (343 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2011, 52:6, 1124–1136
Bibliographic databases:
UDC:
517.5 Received: 11.01.2011 Revised: 10.05.2011
Citation:
M. Sh. Shabozov, G. A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Sibirsk. Mat. Zh., 52:6 (2011), 1414–1427; Siberian Math. J., 52:6 (2011), 1124–1136
Citation in format AMSBIB
\Bibitem{ShaYus11}
\by M.~Sh.~Shabozov, G.~A.~Yusupov
\paper Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in~$L_2$
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 6
\pages 1414--1427
\mathnet{http://mi.mathnet.ru/smj2284}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961765}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 6
\pages 1124--1136
\crossref{https://doi.org/10.1134/S0037446611060176}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298650800017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855170740}
Linking options:
http://mi.mathnet.ru/eng/smj2284 http://mi.mathnet.ru/eng/smj/v52/i6/p1414
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
K. Tukhliev, “O priblizhenii periodicheskikh funktsii v $L_2$ i znacheniyakh poperechnikov nekotorykh klassov funktsii”, Model. i analiz inform. sistem, 22:1 (2015), 127–143
-
S. B. Vakarchuk, “Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in $L_2$”, Math. Notes, 98:4 (2015), 572–588
-
S. B. Vakarchuk, V. I. Zabutnaya, “Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space $L_2$ and Widths of Classes of Functions”, Math. Notes, 99:2 (2016), 222–242
-
K. Tukhliev, “Nailuchshie priblizheniya i poperechniki nekotorykh klassov svertok v $L_{2}$”, Tr. IMM UrO RAN, 22, no. 4, 2016, 284–294
-
S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths for the classes of $(\psi, \beta)$-differentiable functions in $L_2$. I”, Ukr. Math. J., 68:6 (2016), 823–848
-
Vakarchuk S.B., “on the Estimates of Widths of the Classes of Functions Defined By the Generalized Moduli of Continuity and Majorants in the Weighted Space l-2,l-X(0,1)”, Ukr. Math. J., 71:2 (2019), 202–214
-
Babenko V.F., Konareva S.V., “Jackson-Stechkin-Type Inequalities For the Approximation of Elements of Hilbert Spaces”, Ukr. Math. J., 70:9 (2019), 1331–1344
|
Number of views: |
This page: | 232 | Full text: | 102 | References: | 38 | First page: | 6 |
|