RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2012, Volume 53, Number 1, Pages 89–106 (Mi smj2291)  

This article is cited in 6 scientific papers (total in 6 papers)

The spaces of meromorphic Prym differentials on a finite Riemann surface

A. A. Kazantsevaa, V. V. Chueshevb

a Gorno-Altaisk State University, Faculty of Mathematics, Gorno-Altaisk
b Kemerovo State University, Faculty of Mathematics, Kemerovo

Abstract: In the previous articles the second author started constructing a general theory of multiplicative functions and Prym differentials on a compact Riemann surface for arbitrary characters. Function theory on compact Riemann surfaces differs substantially from that on finite Riemann surfaces. In this article we start constructing a general function theory on variable finite Riemann surfaces for multiplicative meromorphic functions and differentials. We construct the forms of all elementary Prym differentials for arbitrary characters and find the dimensions of, and also construct explicit bases for, two important quotient spaces of Prym differentials. This yields the dimension of and a basis for the first holomorphic de Rham cohomology group of Prym differentials for arbitrary characters.

Keywords: Teichmüller space of finite Riemann surfaces, Prym differential, vector bundle, character group, Jacobian variety, multiplicative Weierstrass point.

Full text: PDF file (362 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2012, 53:1, 72–86

Bibliographic databases:

Document Type: Article
UDC: 515.17+517.545
Received: 08.02.2011

Citation: A. A. Kazantseva, V. V. Chueshev, “The spaces of meromorphic Prym differentials on a finite Riemann surface”, Sibirsk. Mat. Zh., 53:1 (2012), 89–106; Siberian Math. J., 53:1 (2012), 72–86

Citation in format AMSBIB
\Bibitem{KazChu12}
\by A.~A.~Kazantseva, V.~V.~Chueshev
\paper The spaces of meromorphic Prym differentials on a~finite Riemann surface
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 1
\pages 89--106
\mathnet{http://mi.mathnet.ru/smj2291}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2962191}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 1
\pages 72--86
\crossref{https://doi.org/10.1134/S0037446612010065}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303357700006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857547264}


Linking options:
  • http://mi.mathnet.ru/eng/smj2291
  • http://mi.mathnet.ru/eng/smj/v53/i1/p89

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. A. Sergeeva, “The Poincare Series and Operators of Duality for Multiplicative Automorphic Forms”, J. Math. Sci., 205:3 (2015), 445–454  mathnet  crossref
    2. M. I. Tulina, “Single-valued differentials and special divisors of Prym differentials”, Siberian Math. J., 54:4 (2013), 731–745  mathnet  crossref  mathscinet  isi
    3. M. I. Tulina, V. V. Chueshev, “Prym Differentials on a Variable Compact Riemann Surface”, Math. Notes, 95:3 (2014), 418–433  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. A. A. Kazanceva, “Single-Valued $q$-Differentials on Variable Finite Riemann Surface”, J. Math. Sci., 213:6 (2016), 857–867  mathnet  crossref
    5. O. A. Chuesheva, “Prym differentials with matrix characters on a finite Riemann surface”, Siberian Math. J., 56:3 (2015), 549–556  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. E. V. Semenko, “Prym differentials as solutions to boundary value problems on Riemann surfaces”, Siberian Math. J., 57:1 (2016), 124–134  mathnet  crossref  crossref  mathscinet  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:167
    Full text:44
    References:25
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019