|
This article is cited in 1 scientific paper (total in 1 paper)
Economical adjunction of square roots to groups
D. V. Baranov, Ant. A. Klyachko M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow
Abstract:
How do we have to extend a group so that in the resulting group all elements of the original group be squares? We give a rather precise answer to this question (the best possible upper bound differs from our estimate by at most a factor of two) and pose several open questions.
Keywords:
equations over a group, adjunction of roots, wreath product.
Full text:
PDF file (300 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2012, 53:2, 201–206
Bibliographic databases:
UDC:
512.543.7+512.542 Received: 20.01.2011
Citation:
D. V. Baranov, Ant. A. Klyachko, “Economical adjunction of square roots to groups”, Sibirsk. Mat. Zh., 53:2 (2012), 250–257; Siberian Math. J., 53:2 (2012), 201–206
Citation in format AMSBIB
\Bibitem{BarKly12}
\by D.~V.~Baranov, Ant.~A.~Klyachko
\paper Economical adjunction of square roots to groups
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 2
\pages 250--257
\mathnet{http://mi.mathnet.ru/smj2303}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2975932}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 2
\pages 201--206
\crossref{https://doi.org/10.1134/S0037446612020024}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303357900002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860366301}
Linking options:
http://mi.mathnet.ru/eng/smj2303 http://mi.mathnet.ru/eng/smj/v53/i2/p250
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Klyachko, A. Thom, “New topological methods to solve equations over groups”, Algebr. Geom. Topol., 17:1 (2017), 331–353
|
Number of views: |
This page: | 271 | Full text: | 58 | References: | 34 | First page: | 8 |
|