RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2012, Volume 53, Number 2, Pages 258–270 (Mi smj2304)  

This article is cited in 1 scientific paper (total in 1 paper)

Dominated convergence in measure on semifinite von Neumann algebras and arithmetic averages of measurable operators

A. M. Bikchentaeva, A. A. Sabirovab

a Research Institute of Mathematics and Mechanics, Kazan State University, Kazan
b Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan

Abstract: Consider a von Neumann algebra $\mathcal M$ with a faithful normal semifinite trace $\tau$. We prove that each order bounded sequence of $\tau$-compact operators includes a subsequence whose arithmetic averages converge in $\tau$. We also prove a noncommutative analog of Pratt's lemma for $L_1(\mathcal M,\tau)$. The results are new even for the algebra $\mathcal{M=B(H)}$ of bounded linear operators with the canonical trace $\tau=\mathrm{tr}$ on a Hilbert space $\mathcal H$. We apply the main result to $L_p(\mathcal M,\tau)$ with $0<p\le1$ and present some examples that show the necessity of passing to the arithmetic averages as well as the necessity of $\tau$-compactness of the dominant.

Keywords: Hilbert space, von Neumann algebra, normal semifinite trace, measurable operator, topology of convergence in measure, spectral theorem, Banach space, Banach–Saks property, arithmetic average.

Full text: PDF file (349 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2012, 53:2, 207–216

Bibliographic databases:

UDC: 517.98
Received: 25.02.2011

Citation: A. M. Bikchentaev, A. A. Sabirova, “Dominated convergence in measure on semifinite von Neumann algebras and arithmetic averages of measurable operators”, Sibirsk. Mat. Zh., 53:2 (2012), 258–270; Siberian Math. J., 53:2 (2012), 207–216

Citation in format AMSBIB
\Bibitem{BikSab12}
\by A.~M.~Bikchentaev, A.~A.~Sabirova
\paper Dominated convergence in measure on semifinite von Neumann algebras and arithmetic averages of measurable operators
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 2
\pages 258--270
\mathnet{http://mi.mathnet.ru/smj2304}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2975933}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 2
\pages 207--216
\crossref{https://doi.org/10.1134/S0037446612020036}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303357900003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860359795}


Linking options:
  • http://mi.mathnet.ru/eng/smj2304
  • http://mi.mathnet.ru/eng/smj/v53/i2/p258

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bikchentaev A.M., “On Sets of Measurable Operators Convex and Closed in Topology of Convergence in Measure”, Dokl. Math., 98:3 (2018), 545–548  crossref  zmath  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:371
    Full text:170
    References:86
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020