RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2013, Volume 54, Number 3, Pages 498–503 (Mi smj2435)  

This article is cited in 3 scientific papers (total in 3 papers)

On the spectral height of $F$-compact spaces

M. A. Baranovaa, A. V. Ivanovb

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Petrozavodsk State University, Faculty of Mathematics, Petrozavodsk, Russia

Abstract: We prove that given an ordinal $\alpha$ with $0<\alpha\le\omega_1$ and $\alpha\ne\beta+1$, where $\beta$ is a limit ordinal, there exists an $F$-compact space of spectral height $\alpha$.

Keywords: fully closed mapping, resolution, $F$-compact space, spectral height.

Full text: PDF file (289 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2013, 54:3, 388–392

Bibliographic databases:

UDC: 515.12
Received: 19.03.2012

Citation: M. A. Baranova, A. V. Ivanov, “On the spectral height of $F$-compact spaces”, Sibirsk. Mat. Zh., 54:3 (2013), 498–503; Siberian Math. J., 54:3 (2013), 388–392

Citation in format AMSBIB
\Bibitem{BarIva13}
\by M.~A.~Baranova, A.~V.~Ivanov
\paper On the spectral height of $F$-compact spaces
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 3
\pages 498--503
\mathnet{http://mi.mathnet.ru/smj2435}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3112608}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 3
\pages 388--392
\crossref{https://doi.org/10.1134/S0037446613030026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322243600002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881066054}


Linking options:
  • http://mi.mathnet.ru/eng/smj2435
  • http://mi.mathnet.ru/eng/smj/v54/i3/p498

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ivanov A.V., Matyushichev K.V., “on Covariant Functors in the Category of Compact Hausdorff Spaces”, Topology Appl., 179:SI (2015), 111–121  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. V. Ivanov, “On products of $F$-compact spaces”, Siberian Math. J., 59:2 (2018), 270–275  mathnet  crossref  crossref  isi  elib
    3. A. V. Ivanov, “The class of Fedorchuk compact spaces is anti-multiplicative”, Topology Appl., 235 (2018), 485–491  crossref  mathscinet  zmath  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:137
    Full text:48
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019