  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Subscription Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Sibirsk. Mat. Zh.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Sibirsk. Mat. Zh., 2013, Volume 54, Number 3, Pages 620–636 (Mi smj2447)  Groups with the same prime graph as the orthogonal group $B_n(3)$

Z. Momen, B. Khosravi

Dept. of Pure Math., Faculty of Math. and Computer Sci., Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran

Abstract: Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. It is proved in  that if $G$ is a finite group such that $\Gamma(G)=\Gamma(B_p(3))$, where $p>3$ is an odd prime, then $G\ge B_p(3)$ or $C_p(3)$. In this paper we prove the main result that if $G$ is a finite group such that $\Gamma(G)=\Gamma(B_n(3))$, where $n\ge6$, then $G$ has a unique nonabelian composition factor isomorphic to $B_n(3)$ or $C_n(3)$. Also if $\Gamma(G)=\Gamma(B_4(3))$, then $G$ has a unique nonabelian composition factor isomorphic to $B_4(3)$, $C_4(3)$, or $^2D_4(3)$. It is proved in  that if $p$ is an odd prime, then $B_p(3)$ is recognizable by element orders. We give a corollary of our result, generalize the result of , and prove that $B_{2k+1}(3)$ is recognizable by the set of element orders. Also the quasirecognition of $B_{2k}(3)$ by the set of element orders is obtained.

Keywords: prime graph, simple group, recognition, quasirecognition. Full text: PDF file (389 kB) References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2013, 54:3, 487–500 Bibliographic databases:   UDC: 512.54

Citation: Z. Momen, B. Khosravi, “Groups with the same prime graph as the orthogonal group $B_n(3)$”, Sibirsk. Mat. Zh., 54:3 (2013), 620–636; Siberian Math. J., 54:3 (2013), 487–500 Citation in format AMSBIB
\Bibitem{MomKho13} \by Z.~Momen, B.~Khosravi \paper Groups with the same prime graph as the orthogonal group $B_n(3)$ \jour Sibirsk. Mat. Zh. \yr 2013 \vol 54 \issue 3 \pages 620--636 \mathnet{http://mi.mathnet.ru/smj2447} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3112620} \transl \jour Siberian Math. J. \yr 2013 \vol 54 \issue 3 \pages 487--500 \crossref{https://doi.org/10.1134/S0037446613030142} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322243600014} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881078485} 

• http://mi.mathnet.ru/eng/smj2447
• http://mi.mathnet.ru/eng/smj/v54/i3/p620

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. Khosravi B., Khosravi B., Oskouei Hamid Reza Dalili, “on Recognition By Prime Graph of the Projective Special Linear Group Over Gf(3)”, Publ. Inst. Math.-Beograd, 95:109 (2014), 255–266     2. Momen Z., Khosravi B., “Quasirecognition By Prime Graph of the Simple Group Bn (9)”, Proc. Rom. Acad. Ser. A-Math. Phys., 16:3 (2015), 397–404    3. Mahmoudifar A., Khosravi B., “on Quasirecognition By Prime Graph of the Simple Groups a(N)(+) (P) and a(N)(-) (P)”, J. Algebra. Appl., 14:1 (2015), 1550006      •  Number of views: This page: 100 Full text: 29 References: 22 First page: 2 Contact us: math-net2019_11 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2019