|
This article is cited in 1 scientific paper (total in 1 paper)
Quasivarieties generated by partially commutative groups
E. I. Timoshenko Novosibirsk State Technical University, Novosibirsk, Russia
Abstract:
We prove that a partially commutative metabelian group is a subgroup in a direct product of torsion-free abelian groups and metabelian products of torsion-free abelian groups. From this we deduce that all partially commutative metabelian (nonabelian) groups generate the same quasivariety and prevariety. On the contrary, there exists an infinite chain of different quasivarieties generated by partially commutative groups with defining graphs of diameter 2.
Keywords:
quasivariety, prevariety, partially commutative group, metabelian group, graph.
Full text:
PDF file (329 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2013, 54:4, 722–730
Bibliographic databases:
UDC:
512.5 Received: 03.07.2012
Citation:
E. I. Timoshenko, “Quasivarieties generated by partially commutative groups”, Sibirsk. Mat. Zh., 54:4 (2013), 902–913; Siberian Math. J., 54:4 (2013), 722–730
Citation in format AMSBIB
\Bibitem{Tim13}
\by E.~I.~Timoshenko
\paper Quasivarieties generated by partially commutative groups
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 4
\pages 902--913
\mathnet{http://mi.mathnet.ru/smj2465}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3137155}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 4
\pages 722--730
\crossref{https://doi.org/10.1134/S0037446613040125}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323742800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883311956}
Linking options:
http://mi.mathnet.ru/eng/smj2465 http://mi.mathnet.ru/eng/smj/v54/i4/p902
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. I. Timoshenko, “On splittings, subgroups, and theories of partially commutative metabelian groups”, Siberian Math. J., 59:3 (2018), 536–541
|
Number of views: |
This page: | 104 | Full text: | 37 | References: | 25 |
|