RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2013, Volume 54, Number 6, Pages 1237–1249 (Mi smj2490)  

This article is cited in 2 scientific papers (total in 2 papers)

Particular features of implementation of an unsaturated numerical method for the exterior axisymmetric Neumann problem

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: Using Babenko's profound ideas, we construct a fundamentally new unsaturated numerical method for solving the spectral problem for the operator of the exterior axisymmetric Neumann problem for Laplace's equation. We estimate the deviation of the first eigenvalue of the discretized problem from the eigenvalue of the Neumann operator. More exactly, the unsaturated discretization of the spectral Neumann problem yields an algebraic problem with a good matrix, i.e., a matrix inheriting the spectral properties of the Neumann operator. Thus, its spectral portrait lacks “parasitic” eigenvalues provided that the discretization error is sufficiently small. The error estimate for the first eigenvalue involves efficiently computable parameters, which in the case of $C^\infty$-smooth data provides a foundation for a guaranteed success.

Keywords: Laplace equation, axisymmetric Neumann problem, spectral problem, unsaturated numerical method, exponential convergence.

Full text: PDF file (342 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2013, 54:6, 984–993

Bibliographic databases:

UDC: 519.632.6+532.582.33
Received: 01.11.2012

Citation: V. N. Belykh, “Particular features of implementation of an unsaturated numerical method for the exterior axisymmetric Neumann problem”, Sibirsk. Mat. Zh., 54:6 (2013), 1237–1249; Siberian Math. J., 54:6 (2013), 984–993

Citation in format AMSBIB
\Bibitem{Bel13}
\by V.~N.~Belykh
\paper Particular features of implementation of an unsaturated numerical method for the exterior axisymmetric Neumann problem
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 6
\pages 1237--1249
\mathnet{http://mi.mathnet.ru/smj2490}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3184089}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 6
\pages 984--993
\crossref{https://doi.org/10.1134/S0037446613060037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329110700003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891291781}


Linking options:
  • http://mi.mathnet.ru/eng/smj2490
  • http://mi.mathnet.ru/eng/smj/v54/i6/p1237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. V. Semisalov, “Razrabotka i analiz bystrogo psevdospektralnogo metoda resheniya nelineinykh zadach Dirikhle”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:2 (2018), 123–138  mathnet  crossref  elib
    2. V. N. Belykh, “The problem of constructing unsaturated quadrature formulae on an interval”, Sb. Math., 210:1 (2019), 24–58  mathnet  crossref  crossref  adsnasa  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:194
    Full text:57
    References:33
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020