RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2013, Volume 54, Number 6, Pages 1368–1379 (Mi smj2502)  

This article is cited in 3 scientific papers (total in 3 papers)

Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay

N. V. Pertsev

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Omsk, Russia

Abstract: The Cauchy problem is considered for Wazewski linear differential systems with finite delay. The right-hand sides of systems contain nonnegative matrices and diagonal matrices with negative diagonal entries. The initial data are nonnegative functions. The matrices in equations are such that the zero solution is asymptotically stable. Two-sided estimates for solutions to the Cauchy problem are constructed with the use of the method of monotone operators and the properties of nonsingular M-matrices. The estimates from below and above are zero and exponential functions with parameters determined by solutions to some auxiliary inequalities and equations. Some estimates for solutions to several particular problems are constructed.

Keywords: Wazewski linear differential systems with delay, exponential stability, SevastТyanov–Kotelyanskii criterion, exponential estimate, M-matrix, quasinonnegative matrix, Perron root.

Full text: PDF file (322 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2013, 54:6, 1088–1097

Bibliographic databases:

UDC: 517.929
Received: 17.12.2012

Citation: N. V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay”, Sibirsk. Mat. Zh., 54:6 (2013), 1368–1379; Siberian Math. J., 54:6 (2013), 1088–1097

Citation in format AMSBIB
\Bibitem{Per13}
\by N.~V.~Pertsev
\paper Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 6
\pages 1368--1379
\mathnet{http://mi.mathnet.ru/smj2502}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3184101}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 6
\pages 1088--1097
\crossref{https://doi.org/10.1134/S0037446613060153}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329110700015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891282549}


Linking options:
  • http://mi.mathnet.ru/eng/smj2502
  • http://mi.mathnet.ru/eng/smj/v54/i6/p1368

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dong Ya., Zhang Ya., Zhang X., “Design of Observer-Based Feedback Control For a Class of Discrete-Time Nonlinear Systems With Time-Delay”, Appl. Comput. Math., 13:1 (2014), 107–121  mathscinet  zmath  isi  elib
    2. N. V. Pertsev, “Study of solutions of a continuous-discrete model of HIV infection spread”, Russ. J. Numer. Anal. Math. Model, 31:5 (2016), 281–291  crossref  mathscinet  zmath  isi  scopus
    3. A. Yu. Aleksandrov, “Construction of the Lyapunov–Krasovskii functionals for some classes of positive delay systems”, Siberian Math. J., 59:5 (2018), 753–762  mathnet  crossref  crossref  isi
  • —ибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:213
    Full text:69
    References:47
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020