RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2013, Volume 54, Number 6, Pages 1380–1387 (Mi smj2503)  

This article is cited in 1 scientific paper (total in 1 paper)

The Carathéodory–Rashevsky–Chow theorem for the nonholonomic Lipschitz distributions

K. V. Storozhukab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: It is proved that if a $k$-dimensional Lipschitz distribution $H$ in $\mathbb R^{k+1}$ is nonholonomic in a connected domain, then every pair of points can be joined by an $H$-polygonal path.

Keywords: Rashevsky–Chow theorem, nonholonomic distribution.

Full text: PDF file (336 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2013, 54:6, 1098–1103

Bibliographic databases:

UDC: 514.763.2
Received: 21.01.2013

Citation: K. V. Storozhuk, “The Carathéodory–Rashevsky–Chow theorem for the nonholonomic Lipschitz distributions”, Sibirsk. Mat. Zh., 54:6 (2013), 1380–1387; Siberian Math. J., 54:6 (2013), 1098–1103

Citation in format AMSBIB
\Bibitem{Sto13}
\by K.~V.~Storozhuk
\paper The Carath\'eodory--Rashevsky--Chow theorem for the nonholonomic Lipschitz distributions
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 6
\pages 1380--1387
\mathnet{http://mi.mathnet.ru/smj2503}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3184102}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 6
\pages 1098--1103
\crossref{https://doi.org/10.1134/S0037446613060165}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329110700016}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891302760}


Linking options:
  • http://mi.mathnet.ru/eng/smj2503
  • http://mi.mathnet.ru/eng/smj/v54/i6/p1380

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. V. Storozhuk, “Lemma o skobke Li pri nedostatochnoi gladkosti”, Sib. zhurn. chist. i prikl. matem., 17:1 (2017), 73–77  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:306
    Full text:109
    References:47
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020