RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2014, Volume 55, Number 4, Pages 719–723 (Mi smj2566)  

This article is cited in 8 scientific papers (total in 8 papers)

On almost contact metric $1$-hypersurfaces in Kählerian manifolds

M. B. Banaru

Smolensk State University, Smolensk, Russia

Abstract: We prove that an almost contact metric structure on an orientable hypersurface with type number 1 in a Kählerian manifold is necessarily cosymplectic.

Keywords: almost contact metric structure, cosymplectic structure, type number, hypersurface, Kählerian manifold.

Full text: PDF file (262 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2014, 55:4, 585–588

Bibliographic databases:

UDC: 513.82
Received: 02.09.2013

Citation: M. B. Banaru, “On almost contact metric $1$-hypersurfaces in Kählerian manifolds”, Sibirsk. Mat. Zh., 55:4 (2014), 719–723; Siberian Math. J., 55:4 (2014), 585–588

Citation in format AMSBIB
\Bibitem{Ban14}
\by M.~B.~Banaru
\paper On almost contact metric $1$-hypersurfaces in K\"ahlerian manifolds
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 4
\pages 719--723
\mathnet{http://mi.mathnet.ru/smj2566}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3242590}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 4
\pages 585--588
\crossref{https://doi.org/10.1134/S0037446614040016}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000340941400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906490407}


Linking options:
  • http://mi.mathnet.ru/eng/smj2566
  • http://mi.mathnet.ru/eng/smj/v55/i4/p719

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. V. Stepanova, G. A. Banaru, M. B. Banaru, “On quasi-Sasakian hypersurfaces of Kählerian manifolds”, Russian Math. (Iz. VUZ), 60:1 (2016), 73–75  mathnet  crossref  isi
    2. M. B. Banaru, “On almost contact metric hypersurfaces with type number $1$ or $0$ in $6$-dimensional Hermitian submanifolds of the Cayley algebra”, Siberian Math. J., 58:4 (2017), 559–563  mathnet  crossref  crossref  isi  elib  elib
    3. M. B. Banaru, “Almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds”, Moscow University Mathematics Bulletin, 73:1 (2018), 38–40  mathnet  crossref  mathscinet  zmath  isi
    4. L. V. Stepanova, M. B. Banaru, G. A. Banaru, “O geometrii QS-giperpoverkhnostei kelerovykh mnogoobrazii”, Sib. elektron. matem. izv., 15 (2018), 815–822  mathnet  crossref
    5. M. Banaru, G. Banaru, “A note on $W_3$-manifolds”, Publ. Inst. Math.-Beograd, 103:117 (2018), 17–23  crossref  mathscinet  isi  scopus
    6. M. Banaru, “A note on geometry of special Hermitian manifolds”, Lobachevskii J. Math., 39:1, SI (2018), 20–24  crossref  mathscinet  zmath  isi  scopus
    7. M. B. Banaru, “O shestimernoi sfere s priblizhenno kelerovoi strukturoi”, Geometriya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 146, VINITI RAN, M., 2018, 3–16  mathnet  mathscinet
    8. M. B. Banaru, G. A. Banaru, “O giperpoverkhnostyakh so strukturoi Kirichenko–Uskoreva v Kelerovykh mnogoobraziyakh”, Sib. elektron. matem. izv., 17 (2020), 1715–1721  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:142
    Full text:39
    References:24
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021