|
This article is cited in 9 scientific papers (total in 9 papers)
Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring
E. K. Leĭnartas, M. S. Rogozina Siberian Federal University, Krasnoyarsk, Russia
Abstract:
We find solvability conditions for a Cauchy problem with a polynomial difference operator and, in particular, give an easy-to-check sufficient condition in terms of the coefficients of the principal symbol of the difference operator. The solvability of the Cauchy problem is shown to be equivalent to the existence of a monomial basis in the quotient ring of the polynomial ring by the ideal generated by the characteristic polynomial.
Keywords:
polynomial difference operator, Cauchy problem, monomial basis for the quotient ring.
Full text:
PDF file (320 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2015, 56:1, 92–100
Bibliographic databases:
UDC:
517.55+519.111.1 Received: 03.06.2014
Citation:
E. K. Leǐnartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sibirsk. Mat. Zh., 56:1 (2015), 111–121; Siberian Math. J., 56:1 (2015), 92–100
Citation in format AMSBIB
\Bibitem{LeiRog15}
\by E.~K.~Le{\v\i}nartas, M.~S.~Rogozina
\paper Solvability of the Cauchy problem for a~polynomial difference operator and monomial bases for the quotients of a~polynomial ring
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 1
\pages 111--121
\mathnet{http://mi.mathnet.ru/smj2625}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3407943}
\elib{https://elibrary.ru/item.asp?id=23112826}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 1
\pages 92--100
\crossref{https://doi.org/10.1134/S0037446615010097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350510300009}
\elib{https://elibrary.ru/item.asp?id=24027225}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928792995}
Linking options:
http://mi.mathnet.ru/eng/smj2625 http://mi.mathnet.ru/eng/smj/v56/i1/p111
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Marina S. Rogozina, “On the correctness of polynomial difference operators”, Zhurn. SFU. Ser. Matem. i fiz., 8:4 (2015), 437–441
-
O. A. Shishkina, “Mnogochleny Bernulli ot neskolkikh peremennykh i summirovanie monomov po tselym tochkam ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 16 (2016), 89–101
-
Marina S. Apanovich, Evgeny K. Leinartas, “Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients”, Zhurn. SFU. Ser. Matem. i fiz., 10:2 (2017), 199–205
-
T. I. Yakovleva, “Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones”, Siberian Math. J., 58:2 (2017), 363–372
-
Evgeny K. Leinartas, Tatiana I. Yakovleva, “The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions”, Zhurn. SFU. Ser. Matem. i fiz., 11:6 (2018), 712–722
-
M. S. Apanovich, E. K. Leinartas, “On correctness of Cauchy problem for a polynomial difference operator with constant coefficients”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 26 (2018), 3–15
-
Evgeny K. Leinartas, Tatiana I. Yakovleva, “On formal solutions of the Hörmander’s initial-boundary value problem in the class of Laurent series”, Zhurn. SFU. Ser. Matem. i fiz., 11:3 (2018), 278–285
-
A. P. Lyapin, S. Chandragiri, “Generating functions for vector partition functions and a basic recurrence relation”, J. Differ. Equ. Appl., 25:7 (2019), 1052–1061
-
Alexander P. Lyapin, Sreelatha Chandragiri, “The Cauchy problem for multidimensional difference equations in lattice cones”, Zhurn. SFU. Ser. Matem. i fiz., 13:2 (2020), 187–196
|
Number of views: |
This page: | 285 | Full text: | 61 | References: | 30 | First page: | 19 |
|