RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2015, Volume 56, Number 1, Pages 192–210 (Mi smj2632)  

This article is cited in 2 scientific papers (total in 2 papers)

On location of the spectrum of the Tricomi problem

Yu. K. Sabitova

Sterlitamak State Pedagogical Academy, Sterlitamak, Russia

Abstract: We study the homogeneous Tricomi problem for a mixed type equation with two spectral parameters $\lambda_1$ and $\lambda_2$ and specify the conditions on these parameters which ensue uniqueness of solutions to this problem. Hence, we describe the sets on the complex plane which do not contain the spectrum of the Tricomi problem.

Keywords: mixed type equation, Tricomi problem, uniqueness theorem, spectrum.

Full text: PDF file (357 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2015, 56:1, 160–176

Bibliographic databases:

Document Type: Article
UDC: 917.95
Received: 13.08.2012

Citation: Yu. K. Sabitova, “On location of the spectrum of the Tricomi problem”, Sibirsk. Mat. Zh., 56:1 (2015), 192–210; Siberian Math. J., 56:1 (2015), 160–176

Citation in format AMSBIB
\Bibitem{Sab15}
\by Yu.~K.~Sabitova
\paper On location of the spectrum of the Tricomi problem
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 1
\pages 192--210
\mathnet{http://mi.mathnet.ru/smj2632}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3407950}
\elib{http://elibrary.ru/item.asp?id=23112833}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 1
\pages 160--176
\crossref{https://doi.org/10.1134/S0037446615010164}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350510300016}
\elib{http://elibrary.ru/item.asp?id=24027257}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928797423}


Linking options:
  • http://mi.mathnet.ru/eng/smj2632
  • http://mi.mathnet.ru/eng/smj/v56/i1/p192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. Dildabek, M. A. Sadybekov, M. B. Saprygina, “On a Volterra property of an problem of the Frankl type for an equation of the mixed parabolic-hyperbolic type”, Proceedings of the 43rd International Conference Applications of Mathematics in Engineering and Economics, AMEE'17, AIP Conf. Proc., 1910, eds. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Physics, 2017, UNSP 040004  crossref  isi  scopus
    2. G. Dildabek, M. B. Saprygina, “Volterra property of an problem of the Frankl type for an parabolic-hyperbolic equation”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA 2017), AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Physics, 2017, UNSP 050011  crossref  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:165
    Full text:28
    References:33
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019