|
Admissible inference rules in the linear logic of knowledge and time $LTK_r$ with intransitive time relation
A. N. Luk'yanchuka, V. V. Rybakovab a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, Russia
b School of Computing, Mathematics and DT, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
Abstract:
We obtain a necessary condition and a sufficient condition for the admissibility of inference rules of the linear multi-modal logic of knowledge and time $LTK_r$ with reflexive and intransitive time relation. We also construct a special $n$-characterizing model for this logic.
Keywords:
multi-modal logic, temporal logic, epistemic logic, $n$-characterizing model, admissibility of inference rules.
DOI:
https://doi.org/10.17377/smzh.2015.56.309
Full text:
PDF file (408 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2015, 56:3, 455–470
Bibliographic databases:
UDC:
510.665 Received: 02.09.2014
Citation:
A. N. Luk'yanchuk, V. V. Rybakov, “Admissible inference rules in the linear logic of knowledge and time $LTK_r$ with intransitive time relation”, Sibirsk. Mat. Zh., 56:3 (2015), 573–593; Siberian Math. J., 56:3 (2015), 455–470
Citation in format AMSBIB
\Bibitem{LukRyb15}
\by A.~N.~Luk'yanchuk, V.~V.~Rybakov
\paper Admissible inference rules in the linear logic of knowledge and time $LTK_r$ with intransitive time relation
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 3
\pages 573--593
\mathnet{http://mi.mathnet.ru/smj2661}
\crossref{https://doi.org/10.17377/smzh.2015.56.309}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3442803}
\elib{https://elibrary.ru/item.asp?id=24795707}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 3
\pages 455--470
\crossref{https://doi.org/10.1134/S003744661503009X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000356826600009}
\elib{https://elibrary.ru/item.asp?id=23985422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935001348}
Linking options:
http://mi.mathnet.ru/eng/smj2661 http://mi.mathnet.ru/eng/smj/v56/i3/p573
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 121 | Full text: | 41 | References: | 26 | First page: | 14 |
|