RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2015, Volume 56, Number 5, Pages 982–987 (Mi smj2692)  

This article is cited in 4 scientific papers (total in 4 papers)

Heights of minor faces in triangle-free $3$-polytopes

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia

Abstract: The height $h(f)$ of a face $f$ in a $3$-polytope is the maximum of the degrees of vertices incident with $f$. A $4$-face is pyramidal if it is incident with at least three $3$-vertices. We note that in the $(3,3,3,n)$-Archimedean solid each face $f$ is pyramidal and satisfies $h(f)=n$.
In 1940, Lebesgue proved that every quadrangulated $3$-polytope without pyramidal faces has a face $f$ with $h(f)\le11$. In 1995, this bound was improved to $10$ by Avgustinovich and Borodin. Recently, the authors improved it to $8$ and constructed a quadrangulated $3$-polytope without pyramidal faces satisfying $h(f)\ge8$ for each $f$.
The purpose of this paper is to prove that each $3$-polytope without triangles and pyramidal $4$-faces has either a $4$-face with $h(f)\le10$ or a $5$-face with $h(f)\le5$, where the bounds $10$ and $5$ are sharp.

Keywords: plane map, plane graph, $3$-polytope, structural properties, height of a face.

DOI: https://doi.org/10.17377/smzh.2015.56.502

Full text: PDF file (491 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2015, 56:5, 783–788

Bibliographic databases:

UDC: 519.17
Received: 24.11.2014

Citation: O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015), 982–987; Siberian Math. J., 56:5 (2015), 783–788

Citation in format AMSBIB
\Bibitem{BorIva15}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Heights of minor faces in triangle-free $3$-polytopes
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 5
\pages 982--987
\mathnet{http://mi.mathnet.ru/smj2692}
\crossref{https://doi.org/10.17377/smzh.2015.56.502}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3492885}
\elib{http://elibrary.ru/item.asp?id=24817491}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 5
\pages 783--788
\crossref{https://doi.org/10.1134/S003744661505002X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363722400002}
\elib{http://elibrary.ru/item.asp?id=24963224}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944937623}


Linking options:
  • http://mi.mathnet.ru/eng/smj2692
  • http://mi.mathnet.ru/eng/smj/v56/i5/p982

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Borodin, A. O. Ivanova, E. I. Vasil'eva, “A Steinberg-like approach to describing faces in $3$-polytopes”, Graphs Comb., 33:1 (2017), 63–71  crossref  mathscinet  zmath  isi  scopus
    2. O. V. Borodin, A. O. Ivanova, “New results about the structure of plane graphs: a survey”, Proceedings of the 8th International Conference on Mathematical Modeling, ICMM-2017, AIP Conf. Proc., 1907, eds. I. Egorov, S. Popov, P. Vabishchevich, M. Antonov, N. Lazarev, M. Troeva, M. Troeva, A. Ivanova, Y. , Amer. Inst. Phys., 2017, UNSP 030051  crossref  isi  scopus
    3. O. V. Borodin, M. A. Bykov, A. O. Ivanova, “More about the height of faces in 3-polytopes”, Discuss. Math. Graph Theory, 38:2 (2018), 443–453  crossref  mathscinet  zmath  isi  scopus
    4. O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Siberian Math. J., 60:3 (2019), 405–411  mathnet  crossref  crossref  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:132
    Full text:38
    References:27
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020