RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2015, Volume 56, Number 5, Pages 1092–1099 (Mi smj2699)  

This article is cited in 1 scientific paper (total in 1 paper)

Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity

A. N. Konovalovab, Yu. P. Popovcd

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Lomonosov Moscow State University, Moscow, Russia
d Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia

Abstract: Considering the dynamical problems of linear elasticity, we construct and justify explicitly solvable discrete (mesh) models with controlled disbalance of the total mechanical energy and maximally possible parallelism degree.

Keywords: dynamical problems of linear elasticity, equilibrium model, approximate viscosity, nonequilibrium model, control of the disbalance of the total mechanical energy.

DOI: https://doi.org/10.17377/smzh.2015.56.509

Full text: PDF file (247 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2015, 56:5, 872–878

Bibliographic databases:

UDC: 519.63+539.3
Received: 21.04.2015

Citation: A. N. Konovalov, Yu. P. Popov, “Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity”, Sibirsk. Mat. Zh., 56:5 (2015), 1092–1099; Siberian Math. J., 56:5 (2015), 872–878

Citation in format AMSBIB
\Bibitem{KonPop15}
\by A.~N.~Konovalov, Yu.~P.~Popov
\paper Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 5
\pages 1092--1099
\mathnet{http://mi.mathnet.ru/smj2699}
\crossref{https://doi.org/10.17377/smzh.2015.56.509}
\elib{http://elibrary.ru/item.asp?id=24817498}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 5
\pages 872--878
\crossref{https://doi.org/10.1134/S0037446615050092}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363722400009}
\elib{http://elibrary.ru/item.asp?id=24963127}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944902036}


Linking options:
  • http://mi.mathnet.ru/eng/smj2699
  • http://mi.mathnet.ru/eng/smj/v56/i5/p1092

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Lazareva, A. S. Arakcheev, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. A. Shoshin, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, L. N. Vyacheslavov, “Calculation of heat sink around cracks formed under pulsed heat load”, All-Russian Conference With International Participation on Modern Problems of Continuum Mechanics and Explosion Physics, Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, eds. A. Chesnokov, E. Pruuel, V. Shelukhin, IOP Publishing Ltd, 2017, UNSP 012120  crossref  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:211
    Full text:71
    References:45
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020