RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2015, Volume 56, Number 5, Pages 1171–1194 (Mi smj2706)  

This article is cited in 1 scientific paper (total in 1 paper)

The morphism property of subelliptic equations on the roto-translation group

M. V. Tryamkinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We establish the morphism property of subelliptic equations for mappings with bounded distortion whose domain lies in the roto-translation group and whose range is the Heisenberg group. This implies that every nonconstant locally bounded mapping with bounded distortion whose domain and range lie in the roto-translation group is continuous, open, and discrete.

Keywords: roto-translation group, mapping with bounded distortion, horizontal differential form, coarea formula, change-of-variable formula.

DOI: https://doi.org/10.17377/smzh.2015.56.516

Full text: PDF file (446 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2015, 56:5, 936–954

Bibliographic databases:

UDC: 517.54+517.518.17
Received: 19.12.2013
Revised: 01.06.2015

Citation: M. V. Tryamkin, “The morphism property of subelliptic equations on the roto-translation group”, Sibirsk. Mat. Zh., 56:5 (2015), 1171–1194; Siberian Math. J., 56:5 (2015), 936–954

Citation in format AMSBIB
\Bibitem{Try15}
\by M.~V.~Tryamkin
\paper The morphism property of subelliptic equations on the roto-translation group
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 5
\pages 1171--1194
\mathnet{http://mi.mathnet.ru/smj2706}
\crossref{https://doi.org/10.17377/smzh.2015.56.516}
\elib{http://elibrary.ru/item.asp?id=24817505}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 5
\pages 936--954
\crossref{https://doi.org/10.1134/S003744661505016X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363722400016}
\elib{http://elibrary.ru/item.asp?id=24963104}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944896357}


Linking options:
  • http://mi.mathnet.ru/eng/smj2706
  • http://mi.mathnet.ru/eng/smj/v56/i5/p1171

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Evseev, M. V. Tryamkin, “Differentiation of the Convolution on the Roto-Translation Group”, Math. Notes, 101:1 (2017), 171–175  mathnet  crossref  crossref  mathscinet  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:465
    Full text:32
    References:35
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020