RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2015, Volume 56, Number 6, Pages 1416–1426 (Mi smj2723)  

This article is cited in 1 scientific paper (total in 1 paper)

A class of almost $c$-simple rings

A. N. Khisamievab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We construct a family of almost $c$-simple rings whose hereditarily finite extension admits universal $\Sigma$-functions.

Keywords: hereditarily finite admissible set, universal $\Sigma$-function, almost $c$-simple model, ring.

DOI: https://doi.org/10.17377/smzh.2015.56.617

Full text: PDF file (318 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2015, 56:6, 1133–1141

Bibliographic databases:

UDC: 512.540+510.5
Received: 21.06.2013
Revised: 18.09.2014

Citation: A. N. Khisamiev, “A class of almost $c$-simple rings”, Sibirsk. Mat. Zh., 56:6 (2015), 1416–1426; Siberian Math. J., 56:6 (2015), 1133–1141

Citation in format AMSBIB
\Bibitem{Khi15}
\by A.~N.~Khisamiev
\paper A class of almost $c$-simple rings
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 6
\pages 1416--1426
\mathnet{http://mi.mathnet.ru/smj2723}
\crossref{https://doi.org/10.17377/smzh.2015.56.617}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3492916}
\elib{http://elibrary.ru/item.asp?id=24817530}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 6
\pages 1133--1141
\crossref{https://doi.org/10.1134/S0037446615060178}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000367464500017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84952911068}


Linking options:
  • http://mi.mathnet.ru/eng/smj2723
  • http://mi.mathnet.ru/eng/smj/v56/i6/p1416

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Khisamiev, “Universal functions and unbounded branching trees”, Algebra and Logic, 57:4 (2018), 309–319  mathnet  crossref  crossref  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:142
    Full text:28
    References:28
    First page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020