|
This article is cited in 3 scientific papers (total in 3 papers)
Constant coefficient linear difference equations on the rational cones of the integer lattice
E. K. Leĭnartasa, T. I. Nekrasova a Siberian Federal University, Krasnoyarsk, Russia
Abstract:
We obtain a sufficient solvability condition for Cauchy problems for a polynomial difference operator with constant coefficients. We prove that if the generating function of the Cauchy data of a homogeneous Cauchy problem lies in one of the classes of Stanley's hierarchy then the generating function of the solution belongs to the same class.
Keywords:
higher-dimensional difference equations, Cauchy problem, generating function, $D$-finite Laurent series.
DOI:
https://doi.org/10.17377/smzh.2016.57.108
Full text:
PDF file (518 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2016, 57:1, 74–85
Bibliographic databases:
UDC:
517.55+517.96 Received: 10.11.2014
Citation:
E. K. Leǐnartas, T. I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Sibirsk. Mat. Zh., 57:1 (2016), 98–112; Siberian Math. J., 57:1 (2016), 74–85
Citation in format AMSBIB
\Bibitem{LeiNek16}
\by E.~K.~Le{\v\i}nartas, T.~I.~Nekrasova
\paper Constant coefficient linear difference equations on the rational cones of the integer lattice
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 98--112
\mathnet{http://mi.mathnet.ru/smj2731}
\crossref{https://doi.org/10.17377/smzh.2016.57.108}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3499854}
\elib{https://elibrary.ru/item.asp?id=26236932}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 74--85
\crossref{https://doi.org/10.1134/S0037446616010080}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373234400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008502163}
Linking options:
http://mi.mathnet.ru/eng/smj2731 http://mi.mathnet.ru/eng/smj/v57/i1/p98
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. A. Shishkina, “Mnogochleny Bernulli ot neskolkikh peremennykh i summirovanie monomov po tselym tochkam ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 16 (2016), 89–101
-
E. K. Leinartas, T. I. Yakovleva, “The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions”, Zhurn. SFU. Ser. Matem. i fiz., 11:6 (2018), 712–722
-
E. K. Leinartas, T. I. Yakovleva, “On formal solutions of hormander's initial-boundary value problem in the class of laurent series”, J. Sib. Fed. Univ.-Math. Phys., 11:3 (2018), 278–285
|
Number of views: |
This page: | 191 | Full text: | 43 | References: | 28 | First page: | 8 |
|