RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2016, Volume 57, Number 1, Pages 157–170 (Mi smj2735)  

This article is cited in 2 scientific papers (total in 2 papers)

Prym differentials as solutions to boundary value problems on Riemann surfaces

E. V. Semenko

Novosibirsk State University, Novosibirsk, Russia

Abstract: Construction of multiplicative functions and Prym differentials, including the case of characters with branch points, reduces to solving a homogeneous boundary value problem on the Riemann surface. The use of the well-established theory of boundary value problems creates additional possibilities for studying Prym differentials and related bundles. Basing on the theory of boundary value problems, we fully describe the class of divisors of Prym differentials and obtain new integral expressions for Prym differentials, which enable us to study them directly and, in particular, to study their dependence on the point of the Teichmüller space and characters. Relying on this, we obtain and generalize certain available results on Prym differentials by a new method.

Keywords: Riemann surface, multiplicative function, Prym differential, homogeneous boundary value problem.

DOI: https://doi.org/10.17377/smzh.2016.57.112

Full text: PDF file (467 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2016, 57:1, 124–134

Bibliographic databases:

UDC: 517.53/55
Received: 27.11.2014

Citation: E. V. Semenko, “Prym differentials as solutions to boundary value problems on Riemann surfaces”, Sibirsk. Mat. Zh., 57:1 (2016), 157–170; Siberian Math. J., 57:1 (2016), 124–134

Citation in format AMSBIB
\Bibitem{Sem16}
\by E.~V.~Semenko
\paper Prym differentials as solutions to boundary value problems on Riemann surfaces
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 157--170
\mathnet{http://mi.mathnet.ru/smj2735}
\crossref{https://doi.org/10.17377/smzh.2016.57.112}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3499858}
\elib{http://elibrary.ru/item.asp?id=26236936}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 124--134
\crossref{https://doi.org/10.1134/S0037446616010122}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373234400012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008430124}


Linking options:
  • http://mi.mathnet.ru/eng/smj2735
  • http://mi.mathnet.ru/eng/smj/v57/i1/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Semenko, “Connection between holomorphic vector bundles and cohomology on a Riemann surface and conjugation boundary value problems”, Siberian Math. J., 58:2 (2017), 310–318  mathnet  crossref  crossref  isi  elib  elib
    2. E. V. Semenko, “Reduction of vector boundary value problems on Riemann surfaces to one-dimensional problems”, Siberian Math. J., 60:1 (2019), 153–163  mathnet  crossref  crossref  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:81
    Full text:21
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019