|
This article is cited in 4 scientific papers (total in 4 papers)
Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain
A. M. Kytmanova, S. G. Myslivets a Siberian Federal University, Institute of Mathematics, Krasnoyarsk, Russia
Abstract:
We consider the continuous functions on the boundary of a bounded $n$-circular domain $D$ in $\mathbb C^n$, $n>1$, which admit one-dimensional holomorphic extension along a family of complex straight lines passing through finitely many points of $D$. The question is addressed of the existence of a holomorphic extension of these functions to $D$.
Keywords:
holomorphic extension, $n$-circular domains, Szegö integral representation.
Funding Agency |
Grant Number |
Russian Foundation for Basic Research  |
14-01-00544 |
Ministry of Education and Science of the Russian Federation  |
14.Y26.31.0006 НШ-9149.2016.1 |
The authors were supported by the Russian Foundation for Basic Research (Grant 14-01-00544), the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-9149.2016.1), and
the Government of the Russian Federation for the State Maintenance Program for the Leading Scientific Schools
at Siberian Federal University (Grant 14.Y26.31.0006). |
DOI:
https://doi.org/10.17377/smzh.2016.57.406
Full text:
PDF file (359 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2016, 57:4, 618–631
Bibliographic databases:
UDC:
517.55 Received: 18.09.2015
Citation:
A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain”, Sibirsk. Mat. Zh., 57:4 (2016), 792–808; Siberian Math. J., 57:4 (2016), 618–631
Citation in format AMSBIB
\Bibitem{KytMys16}
\by A.~M.~Kytmanov, S.~G.~Myslivets
\paper Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 4
\pages 792--808
\mathnet{http://mi.mathnet.ru/smj2785}
\crossref{https://doi.org/10.17377/smzh.2016.57.406}
\elib{https://elibrary.ru/item.asp?id=27380077}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 4
\pages 618--631
\crossref{https://doi.org/10.1134/S0037446616040066}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000382146900006}
\elib{https://elibrary.ru/item.asp?id=27141332}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983651734}
Linking options:
http://mi.mathnet.ru/eng/smj2785 http://mi.mathnet.ru/eng/smj/v57/i4/p792
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Alexander M. Kytmanov, Simona G. Myslivets, “Multidimensional boundary analog of the Hartogs theorem in circular domains”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 79–90
-
Bayram P. Otemuratov, “On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 91–96
-
Simona G. Myslivets, “Functions with the one-dimensional holomorphic extension property”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 439–443
-
A. M. Kytmanov, S. G. Myslivets, “On functions with one-dimensional holomorphic extension property in circular domains”, Math. Nachr., 292:6 (2019), 1321–1332
|
Number of views: |
This page: | 134 | Full text: | 46 | References: | 21 | First page: | 1 |
|