RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2017, Volume 58, Number 1, Pages 48–55 (Mi smj2838)  

This article is cited in 3 scientific papers (total in 3 papers)

The height of faces of $3$-polytopes

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia

Abstract: The height of a face in a $3$-polytope is the maximum degree of the incident vertices of the face, and the height of a $3$-polytope, $h$, is the minimum height of its faces. A face is pyramidal if it is either a $4$-face incident with three $3$-vertices, or a $3$-face incident with two vertices of degree at most $4$. If pyramidal faces are allowed, then $h$ can be arbitrarily large; so we assume the absence of pyramidal faces. In 1940, Lebesgue proved that every quadrangulated $3$-polytope has $h\le11$. In 1995, this bound was lowered by Avgustinovich and Borodin to $10$. Recently, we improved it to the sharp bound $8$. For plane triangulation without $4$-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that $h\le20$ which bound is sharp. Later, Borodin (1998) proved that $h\le20$ for all triangulated $3$-polytopes. Recently, we obtained the sharp bound $10$ for triangle-free $3$-polytopes. In 1996, Horňák and Jendrol' proved for arbitrarily $3$-polytopes that $h\le23$. In this paper we improve this bound to the sharp bound $20$.

Keywords: plane map, planar graph, $3$-polytope, structure properties, height of face.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-05867
16-01-00499
Ministry of Education and Science of the Russian Federation НШ-1939.2014.1
The first author was supported by the Russian Foundation for Basic Research (Grants 15-01-05867 and 16-01-00499) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-1939.2014.1). The second author worked within the governmental task “Organization of Scientific Research”.


DOI: https://doi.org/10.17377/smzh.2017.58.105

Full text: PDF file (390 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2017, 58:1, 37–42

Bibliographic databases:

UDC: 519.17
MSC: 35R30
Received: 01.04.2015

Citation: O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017), 48–55; Siberian Math. J., 58:1 (2017), 37–42

Citation in format AMSBIB
\Bibitem{BorIva17}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper The height of faces of $3$-polytopes
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 48--55
\mathnet{http://mi.mathnet.ru/smj2838}
\crossref{https://doi.org/10.17377/smzh.2017.58.105}
\elib{http://elibrary.ru/item.asp?id=29159901}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 37--42
\crossref{https://doi.org/10.1134/S0037446617010050}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396065100005}
\elib{http://elibrary.ru/item.asp?id=29485486}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014722960}


Linking options:
  • http://mi.mathnet.ru/eng/smj2838
  • http://mi.mathnet.ru/eng/smj/v58/i1/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Borodin O.V. Ivanova A.O., “New Results About the Structure of Plane Graphs: a Survey”, Proceedings of the 8th International Conference on Mathematical Modeling (ICMM-2017), AIP Conference Proceedings, 1907, ed. Egorov I. Popov S. Vabishchevich P. Antonov M. Lazarev N. Troeva M. Troeva M. Ivanova A. Grigorev Y., Amer Inst Physics, 2017, UNSP 030051  crossref  isi  scopus
    2. O. V. Borodin, M. A. Bykov, A. O. Ivanova, “More about the height of faces in 3-polytopes”, Discuss. Math. Graph Theory, 38:2 (2018), 443–453  crossref  mathscinet  zmath  isi  scopus
    3. O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Siberian Math. J., 60:3 (2019), 405–411  mathnet  crossref  crossref  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:92
    Full text:17
    References:22
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020