RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2017, Volume 58, Number 1, Pages 104–106 (Mi smj2844)  

This article is cited in 1 scientific paper (total in 1 paper)

The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis

D. V. Egorov

Institute of Mathematics and Information Science, Ammosov North-Eastern Federal University, Yakutsk, Russia

Abstract: We prove an analog of the Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis.

Keywords: discrete holomorphic function, discrete Riemann–Roch theorem.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-4382.2014.1
Dynasty Foundation
The author was partially supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-4382.2014.1) and a fellowship for young scientists of the Dynasty Foundation.


DOI: https://doi.org/10.17377/smzh.2017.58.111

Full text: PDF file (216 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2017, 58:1, 78–79

Bibliographic databases:

UDC: 517.962.22+517.547.9
MSC: 35R30
Received: 03.05.2016

Citation: D. V. Egorov, “The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis”, Sibirsk. Mat. Zh., 58:1 (2017), 104–106; Siberian Math. J., 58:1 (2017), 78–79

Citation in format AMSBIB
\Bibitem{Ego17}
\by D.~V.~Egorov
\paper The Riemann--Roch theorem for the Dynnikov--Novikov discrete complex analysis
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 104--106
\mathnet{http://mi.mathnet.ru/smj2844}
\crossref{https://doi.org/10.17377/smzh.2017.58.111}
\elib{http://elibrary.ru/item.asp?id=29159907}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 78--79
\crossref{https://doi.org/10.1134/S0037446617010116}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396065100011}
\elib{http://elibrary.ru/item.asp?id=29496483}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014632549}


Linking options:
  • http://mi.mathnet.ru/eng/smj2844
  • http://mi.mathnet.ru/eng/smj/v58/i1/p104

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Dynnikov, “Bounded discrete holomorphic functions on the hyperbolic plane”, Proc. Steklov Inst. Math., 302 (2018), 186–197  mathnet  crossref  crossref  mathscinet  isi  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:89
    Full text:25
    References:23
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020