Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. матем. журн., 2017, том 58, номер 4, страницы 728–744 (Mi smj2893)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Корректность одной нестационарной осесимметричной задачи гидродинамики со свободной поверхностью

В. Н. Белых

Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090

Аннотация: В предположении потенциальности движения жидкости доказана локальная теорема существования и единственности аналитического по времени решения в точной математической постановке. Получено строгое описание начальной стадии нестационарного движения осесимметричной жидкой “капли”, предшествующей моменту эволюционного разрушения (“blow-up”) свободной границы.

Ключевые слова: свободная граница, идеальная жидкость, задача Коши, аналитическое решение.

DOI: https://doi.org/10.17377/smzh.2017.58.402

Полный текст: PDF файл (325 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Siberian Mathematical Journal, 2017, 58:4, 564–577

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.95+532.22
MSC: 35R30
Статья поступила: 24.11.2016

Образец цитирования: В. Н. Белых, “Корректность одной нестационарной осесимметричной задачи гидродинамики со свободной поверхностью”, Сиб. матем. журн., 58:4 (2017), 728–744; Siberian Math. J., 58:4 (2017), 564–577

Цитирование в формате AMSBIB
\RBibitem{Bel17}
\by В.~Н.~Белых
\paper Корректность одной нестационарной осесимметричной задачи гидродинамики со свободной поверхностью
\jour Сиб. матем. журн.
\yr 2017
\vol 58
\issue 4
\pages 728--744
\mathnet{http://mi.mathnet.ru/smj2893}
\crossref{https://doi.org/10.17377/smzh.2017.58.402}
\elib{https://elibrary.ru/item.asp?id=29947445}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 4
\pages 564--577
\crossref{https://doi.org/10.1134/S0037446617040024}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000408727100002}
\elib{https://elibrary.ru/item.asp?id=31089914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028533217}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/smj2893
  • http://mi.mathnet.ru/rus/smj/v58/i4/p728

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. E. A. Karabut, A. G. Petrov, E. N. Zhuravleva, “Semi-analytical study of the Voinovs problem”, Eur. J. Appl. Math., 30:2 (2019), 298–337  crossref  mathscinet  zmath  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Просмотров:
    Эта страница:116
    Полный текст:28
    Литература:23
    Первая стр.:6
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021