RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2017, Volume 58, Number 5, Pages 1056–1079 (Mi smj2919)  

This article is cited in 9 scientific papers (total in 9 papers)

Area formulas for classes of Hölder continuous mappings of Carnot groups

M. B. Karmanova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We prove area formulas for classes of the mappings that are Hölder continuous in the sub-Riemannian sense and defined on nilpotent graded groups. Moreover, in one of the model cases, we establish an area formula for calculating the initial measure and a measure close to it.

Keywords: nilpotent graded group, Carnot group, Hölder continuous mapping, Lipschitz continuous mapping, graph mapping, intrinsic measure, area formula.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-31-60036-мол-а-дк
The author was supported by the Russian Foundation for Basic Research (Grant 16-31-60036-mol-a-dk).


DOI: https://doi.org/10.17377/smzh.2017.58.509

Full text: PDF file (418 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2017, 58:5, 817–836

Bibliographic databases:

UDC: 517.3+514.7
MSC: 35R30
Received: 10.11.2016

Citation: M. B. Karmanova, “Area formulas for classes of Hölder continuous mappings of Carnot groups”, Sibirsk. Mat. Zh., 58:5 (2017), 1056–1079; Siberian Math. J., 58:5 (2017), 817–836

Citation in format AMSBIB
\Bibitem{Kar17}
\by M.~B.~Karmanova
\paper Area formulas for classes of H\"older continuous mappings of Carnot groups
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 1056--1079
\mathnet{http://mi.mathnet.ru/smj2919}
\crossref{https://doi.org/10.17377/smzh.2017.58.509}
\elib{https://elibrary.ru/item.asp?id=29947472}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 817--836
\crossref{https://doi.org/10.1134/S0037446617050093}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000413438200009}
\elib{https://elibrary.ru/item.asp?id=31125466}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032014234}


Linking options:
  • http://mi.mathnet.ru/eng/smj2919
  • http://mi.mathnet.ru/eng/smj/v58/i5/p1056

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. B. Karmanova, “Polynomial sub-Riemannian differentiability on Carnot–Carathéodory spaces”, Siberian Math. J., 59:5 (2018), 860–869  mathnet  crossref  crossref  isi  elib
    2. M. B. Karmanova, “Metric properties of level surfaces of Hölder mappings defined on two-step Carnot groups”, Dokl. Math., 97:2 (2018), 122–124  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    3. M. B. Karmanova, “Level sets of classes of mappings of two-step Carnot groups in a nonholonomic interpretation”, Siberian Math. J., 60:2 (2019), 304–311  mathnet  crossref  crossref  isi  elib
    4. M. B. Karmanova, “Minimalnye poverkhnosti-grafiki na proizvolnykh dvustupenchatykh gruppakh Karno”, Izv. vuzov. Matem., 2019, no. 5, 15–29  mathnet  crossref
    5. M. B. Karmanova, “On the class of Hölder surfaces in Carnot–Carathéodory spaces”, Siberian Math. J., 60:5 (2019), 861–885  mathnet  crossref  crossref  isi  elib
    6. M. B. Karmanova, “O lokalnykh metricheskikh kharakteristikakh mnozhestv urovnya $C^1_H$-otobrazhenii mnogoobrazii Karno”, Sib. matem. zhurn., 60:6 (2019), 1291–1309  mathnet  crossref
    7. M. B. Karmanova, “Two-step sub-Lorentzian structures and graph surfaces”, Izv. Math., 84:1 (2020), 52–94  mathnet  crossref  crossref  isi  elib
    8. M. B. Karmanova, “A Metric Characteristic of Minimal Surfaces on Arbitrary Carnot Groups”, Math. Notes, 108:6 (2020), 895–900  mathnet  crossref  crossref
    9. M. B. Karmanova, “Klassy maksimalnykh poverkhnostei na gruppakh Karno”, Sib. matem. zhurn., 61:5 (2020), 1009–1026  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:102
    Full text:27
    References:20
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021