RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2018, Volume 59, Number 1, Pages 41–55 (Mi smj2952)  

Geodesics and curvatures of special sub-Riemannian metrics on Lie groups

V. N. Berestovskiiab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Let $G$ be a full connected semisimple isometry Lie group of a connected Riemannian symmetric space $M=G/K$ with the stabilizer $K$; $p\colon G\to G/K=M$ the canonical projection which is a Riemannian submersion for some $G$-left invariant and $K$-right invariant Riemannian metric on $G$, and $d$ is a (unique) sub-Riemannian metric on $G$ defined by this metric and the horizontal distribution of the Riemannian submersion $p$. It is proved that each geodesic in $(G,d)$ is normal and presents an orbit of some one-parameter isometry group. By the Solov'ev method, using the Cartan decomposition for $M=G/K$, the author found the curvatures of the homogeneous sub-Riemannian manifold $(G,d)$. In the case $G=\operatorname{Sp}(1)\times\operatorname{Sp}(1)$ with the Riemannian symmetric space $S^3=\operatorname{Sp}(1)=G/\operatorname{diag}(\operatorname{Sp}(1)\times\operatorname{Sp}(1))$ the curvatures and torsions are calculated of images in $S^3$ of all geodesics on $(G,d)$ with respect to $p$.

Keywords: geodesic orbit space, left invariant sub-Riemannian metric, Lie algebra, Lie group, normal geodesic, Riemannian symmetric space.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.3087.2017/4.6
The author was supported by the Ministry of Education and Science of the Russian Federation (Grant 1.3087.2017/4.6).


DOI: https://doi.org/10.17377/smzh.2018.59.104

Full text: PDF file (349 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2018, 59:1, 31–42

Bibliographic databases:

Document Type: Article
UDC: 514.752.8+514.763+514.765+514.764.227
MSC: 35R30
Received: 26.04.2017

Citation: V. N. Berestovskii, “Geodesics and curvatures of special sub-Riemannian metrics on Lie groups”, Sibirsk. Mat. Zh., 59:1 (2018), 41–55; Siberian Math. J., 59:1 (2018), 31–42

Citation in format AMSBIB
\Bibitem{Ber18}
\by V.~N.~Berestovskii
\paper Geodesics and curvatures of special sub-Riemannian metrics on Lie groups
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 41--55
\mathnet{http://mi.mathnet.ru/smj2952}
\crossref{https://doi.org/10.17377/smzh.2018.59.104}
\elib{http://elibrary.ru/item.asp?id=32824584}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 31--42
\crossref{https://doi.org/10.1134/S0037446618010044}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000427144300004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043522149}


Linking options:
  • http://mi.mathnet.ru/eng/smj2952
  • http://mi.mathnet.ru/eng/smj/v59/i1/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:30
    References:5
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019