RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. матем. журн., 2018, том 59, номер 3, страницы 491–513 (Mi smj2989)  

Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)

Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I

А. А. Боровков, А. А. Могульский

Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090

Аннотация: Получены интегро-локальные предельные теоремы в фазовом пространстве для обобщенных процессов восстановления при выполнении моментного условия Крамера. Теоремы действуют в области, являющейся аналогом крамеровской зоны уклонений для случайных блужданий. Эта область включает в себя зоны нормальных и умеренно-больших уклонений. При тех же условиях установлены интегро-локальные теоремы для конечномерных распределений обобщенных процессов восстановления.

Ключевые слова: обобщенный процесс восстановления, большие уклонения, интегро-локальные теоремы, мера восстановления, условие Крамера, функция уклонений, вторая функция уклонений.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-01-00101
Работа выполнена при частичной финансовой поддержке грантом РФФИ в рамках научного проекта № 18-01-00101.


DOI: https://doi.org/10.17377/smzh.2018.59.302

Полный текст: PDF файл (385 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Siberian Mathematical Journal, 2018, 59:3, 383–402

Реферативные базы данных:

Тип публикации: Статья
УДК: 519.21
MSC: 35R30
Статья поступила: 12.12.2017

Образец цитирования: А. А. Боровков, А. А. Могульский, “Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I”, Сиб. матем. журн., 59:3 (2018), 491–513; Siberian Math. J., 59:3 (2018), 383–402

Цитирование в формате AMSBIB
\RBibitem{BorMog18}
\by А.~А.~Боровков, А.~А.~Могульский
\paper Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера.~I
\jour Сиб. матем. журн.
\yr 2018
\vol 59
\issue 3
\pages 491--513
\mathnet{http://mi.mathnet.ru/smj2989}
\crossref{https://doi.org/10.17377/smzh.2018.59.302}
\elib{https://elibrary.ru/item.asp?id=35730773}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 3
\pages 383--402
\crossref{https://doi.org/10.1134/S0037446618030023}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000436590800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049341902}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/smj2989
  • http://mi.mathnet.ru/rus/smj/v59/i3/p491

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Цикл статей

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Могульский, Е. И. Прокопенко, “Интегро-локальные теоремы для многомерных обобщенных процессов восстановления при моментном условии Крамера. I”, Сиб. электрон. матем. изв., 15 (2018), 475–502  mathnet  crossref
    2. А. А. Могульский, Е. И. Прокопенко, “Интегро-локальные теоремы для многомерных обобщенных процессов восстановления при моментном условии Крамера. II”, Сиб. электрон. матем. изв., 15 (2018), 503–527  mathnet  crossref
    3. А. А. Могульский, Е. И. Прокопенко, “Интегро-локальные теоремы для многомерных обобщенных процессов восстановления при моментном условии Крамера. III”, Сиб. электрон. матем. изв., 15 (2018), 528–553  mathnet  crossref
    4. А. А. Боровков, А. А. Могульский, “Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II”, Сиб. матем. журн., 59:4 (2018), 736–758  mathnet  crossref; A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Siberian Math. J., 59:4 (2018), 578–597  crossref  isi  elib
    5. А. А. Могульский, “Локальные теоремы для арифметических обобщенных процессов восстановления при выполнении условия Крамера”, Сиб. электрон. матем. изв., 16 (2019), 21–41  mathnet  crossref
    6. А. А. Могульский, Е. И. Прокопенко, “Локальные теоремы для арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера”, Матем. тр., 22:2 (2019), 106–133  mathnet  crossref
    7. А. А. Могульский, Е. И. Прокопенко, “Функция уклонений и базовая функция для многомерного обобщенного процесса восстановления”, Сиб. электрон. матем. изв., 16 (2019), 1449–1463  mathnet  crossref
    8. А. А. Могульский, Е. И. Прокопенко, “Принцип больших уклонений в фазовом пространстве для многомерного первого обобщенного процесса восстановления”, Сиб. электрон. матем. изв., 16 (2019), 1464–1477  mathnet  crossref
    9. А. А. Могульский, Е. И. Прокопенко, “Принцип больших уклонений в фазовом пространстве для многомерного второго обобщенного процесса восстановления”, Сиб. электрон. матем. изв., 16 (2019), 1478–1492  mathnet  crossref
    10. А. А. Боровков, “Интегро-локальные теоремы в граничных задачах для обобщенных процессов восстановления”, Сиб. матем. журн., 60:6 (2019), 1229–1246  mathnet  crossref
    11. А. А. Боровков, А. А. Могульский, Е. И. Прокопенко, “Свойства функции уклонений обобщенного процесса восстановления и асимптотика преобразования Лапласа над его распределением”, Теория вероятн. и ее примен., 64:4 (2019), 625–641  mathnet  crossref  mathscinet; A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process”, Theory Probab. Appl., 64:4 (2019), 499–512  crossref  isi  elib
    12. А. А. Боровков, “Граничные задачи для обобщенных процессов восстановления”, Сиб. матем. журн., 61:1 (2020), 29–59  mathnet  crossref
    13. А. А. Могульский, Е. И. Прокопенко, “Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления”, Матем. тр., 23:2 (2020), 148–176  mathnet  crossref
    14. А. А. Боровков, “Точная асимптотика преобразования Лапласа над распределением обобщенного процесса восстановления и связанные с ней задачи”, Сиб. электрон. матем. изв., 17 (2020), 824–839  mathnet  crossref
    15. А. В. Логачёв, А. А. Могульский, “Локальные теоремы для конечномерных приращений арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера”, Сиб. электрон. матем. изв., 17 (2020), 1766–1786  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Просмотров:
    Эта страница:226
    Полный текст:43
    Литература:14
    Первая стр.:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021