RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2018, Volume 59, Number 5, Pages 1020–1056 (Mi smj3027)  

This article is cited in 1 scientific paper (total in 1 paper)

Basics of the quasiconformal analysis of a two-index scale of spatial mappings

S. K. Vodopyanovabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Peoples' Friendship University of Russia, Moscow, Russia

Abstract: We define a scale of mappings that depends on two real parameters $p$ and $q$, $n-1\leq q\leq p<\infty$, and a weight function $\theta$ In the case of $q=p=n$, $\theta\equiv1$, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.

Keywords: quasiconformal analysis, Sobolev space, capacity estimate, theorem on removable singularities.

Funding Agency Grant Number
Russian Science Foundation 16-41-02004
The author was supported by the Russian Science Foundation (Grant 16-41-02004).


DOI: https://doi.org/10.17377/smzh.2018.59.507

Full text: PDF file (524 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2018, 59:5, 805–834

Bibliographic databases:

UDC: 517.518+517.54
Received: 28.06.2018

Citation: S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056; Siberian Math. J., 59:5 (2018), 805–834

Citation in format AMSBIB
\Bibitem{Vod18}
\by S.~K.~Vodopyanov
\paper Basics of the quasiconformal analysis of a~two-index scale of spatial mappings
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1020--1056
\mathnet{http://mi.mathnet.ru/smj3027}
\crossref{https://doi.org/10.17377/smzh.2018.59.507}
\elib{http://elibrary.ru/item.asp?id=38619061}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 805--834
\crossref{https://doi.org/10.1134/S0037446618050075}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452230400007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057505463}


Linking options:
  • http://mi.mathnet.ru/eng/smj3027
  • http://mi.mathnet.ru/eng/smj/v59/i5/p1020

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function”, Siberian Math. J., 59:6 (2018), 983–1005  mathnet  crossref  crossref  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:82
    Full text:11
    References:18
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019