RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2018, Volume 59, Number 5, Pages 1057–1065 (Mi smj3028)  

The Fourier–Faber–Schauder series unconditionally divergent in measure

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Yerevan, Armenia
b Russian-Armenian University, Yerevan, Armenia

Abstract: We prove that, for every $\varepsilon\in (0,1)$, there is a measurable set $E\subset[0,1]$ whose measure $|E|$ satisfies the estimate $|E|>1-\varepsilon$ and, for every function $f\in C_{[0,1]}$, there is $\tilde f\in C_{[0,1]}$ coinciding with $f$ on $E$ whose expansion n the Faber–Schauder system diverges in measure after a rearrangement.

Keywords: uniform convergence, Faber–Schauder system, convergence in measure.

DOI: https://doi.org/10.17377/smzh.2018.59.508

Full text: PDF file (294 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2018, 59:5, 835–842

Bibliographic databases:

UDC: 517.51
Received: 11.12.2017

Citation: M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Sibirsk. Mat. Zh., 59:5 (2018), 1057–1065; Siberian Math. J., 59:5 (2018), 835–842

Citation in format AMSBIB
\Bibitem{GriSar18}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper The Fourier--Faber--Schauder series unconditionally divergent in measure
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1057--1065
\mathnet{http://mi.mathnet.ru/smj3028}
\crossref{https://doi.org/10.17377/smzh.2018.59.508}
\elib{http://elibrary.ru/item.asp?id=38637646}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 835--842
\crossref{https://doi.org/10.1134/S0037446618050087}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452230400008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057477987}


Linking options:
  • http://mi.mathnet.ru/eng/smj3028
  • http://mi.mathnet.ru/eng/smj/v59/i5/p1057

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:72
    Full text:11
    References:15
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020