|
On groups with a Frobenius element
A. I. Sozutov, E. B. Durakov Siberian Federal University, Krasnoyarsk, Russia
Abstract:
We study groups with an $H$-Frobenius element and the nilpotent kernels of the corresponding Frobenius subgroups. We prove the two theorems that solve Question 10.61 of “The Kourovka Notebook” in this case.
Keywords:
group, infinite group with finiteness conditions, Frobenius group, Frobenius subgroup, $H$-Frobenius element.
Funding Agency |
Grant Number |
Russian Foundation for Basic Research  |
15-01-04897-a |
The authors were financially supported by the Russian Foundation for Basic Research (Grant 15-01-04897-a). |
DOI:
https://doi.org/10.17377/smzh.2018.59.518
Full text:
PDF file (325 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2018, 59:5, 938–946
Bibliographic databases:
UDC:
512.544
MSC: 35R30 Received: 27.11.2017
Citation:
A. I. Sozutov, E. B. Durakov, “On groups with a Frobenius element”, Sibirsk. Mat. Zh., 59:5 (2018), 1179–1191; Siberian Math. J., 59:5 (2018), 938–946
Citation in format AMSBIB
\Bibitem{SozDur18}
\by A.~I.~Sozutov, E.~B.~Durakov
\paper On groups with a~Frobenius element
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1179--1191
\mathnet{http://mi.mathnet.ru/smj3038}
\crossref{https://doi.org/10.17377/smzh.2018.59.518}
\elib{https://elibrary.ru/item.asp?id=38624302}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 938--946
\crossref{https://doi.org/10.1134/S003744661805018X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452230400018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057439114}
Linking options:
http://mi.mathnet.ru/eng/smj3038 http://mi.mathnet.ru/eng/smj/v59/i5/p1179
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 123 | Full text: | 25 | References: | 16 | First page: | 2 |
|