|
This article is cited in 3 scientific papers (total in 3 papers)
Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function
S. K. Vodopyanovab a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Abstract:
We define two scales of the mappings that depend on two real parameters $p$ and $q$, with $n-1\leq q\leq p<\infty$, as well as a weight function $\theta$. The case $q=p=n$ and $\theta\equiv1$ yields the well-known mappings with bounded distortion. The mappings of a two-index scale are applied to solve a series of problems of global analysis and applications. The main result of the article is the a.e. differentiability of mappings of two-index scales.
Keywords:
quasiconformal analysis, Sobolev space, capacity estimate, differentiability, Liouville theorem.
DOI:
https://doi.org/10.17377/smzh.2018.59.603
Full text:
PDF file (478 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2018, 59:6, 983–1005
Bibliographic databases:
UDC:
517.518+517.54
MSC: 35R30 Received: 11.07.2018
Citation:
S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function”, Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267; Siberian Math. J., 59:6 (2018), 983–1005
Citation in format AMSBIB
\Bibitem{Vod18}
\by S.~K.~Vodopyanov
\paper Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 6
\pages 1240--1267
\mathnet{http://mi.mathnet.ru/smj3041}
\crossref{https://doi.org/10.17377/smzh.2018.59.603}
\elib{https://elibrary.ru/item.asp?id=38644835}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 6
\pages 983--1005
\crossref{https://doi.org/10.1134/S0037446618060034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454441000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057482206}
Linking options:
http://mi.mathnet.ru/eng/smj3041 http://mi.mathnet.ru/eng/smj/v59/i6/p1240
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Siberian Math. J., 59:5 (2018), 805–834
-
A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differ. Equ., 59:1 (2019), 17
-
S. K. Vodopyanov, “O regulyarnosti otobrazhenii, obratnykh k sobolevskim, i teoriya $\mathscr{Q}_{q,p}$-gomeomorfizmov”, Sib. matem. zhurn., 61:6 (2020), 1257–1299
|
Number of views: |
This page: | 176 | Full text: | 39 | References: | 23 | First page: | 13 |
|