|
This article is cited in 1 scientific paper (total in 1 paper)
Functional limit theorems for compound renewal processes
A. A. Borovkovab a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
We generalize Anscombe’s Theorem to the case of stochastic processes converging to a continuous random process. As applications, we find a simple proof of an invariance principle for compound renewal processes (CRPs) in the case of finite variance of the elements of the control sequence. We find conditions, close to minimal ones, of the weak convergence of CRPs in the metric space D with metrics of two types to stable processes in the case of infinite variance. They turn out narrower than the conditions for convergence of a distribution in this space.
Keywords:
Anscombe's theorem, functional limit theorems, compound renewal processes, invariance principle, convergence to a stable process.
DOI:
https://doi.org/10.33048/smzh.2019.60.104
Full text:
PDF file (340 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2019, 60:1, 27–40
Bibliographic databases:
UDC:
519.21
MSC: 35R30 Received: 19.05.2018 Revised: 19.05.2018 Accepted:23.05.2018
Citation:
A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Sibirsk. Mat. Zh., 60:1 (2019), 37–54; Siberian Math. J., 60:1 (2019), 27–40
Citation in format AMSBIB
\Bibitem{Bor19}
\by A.~A.~Borovkov
\paper Functional limit theorems for compound renewal processes
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 1
\pages 37--54
\mathnet{http://mi.mathnet.ru/smj3057}
\crossref{https://doi.org/10.33048/smzh.2019.60.104}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3919161}
\elib{https://elibrary.ru/item.asp?id=38682645}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 1
\pages 27--40
\crossref{https://doi.org/10.1134/S003744661901004X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000464720000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065244952}
Linking options:
http://mi.mathnet.ru/eng/smj3057 http://mi.mathnet.ru/eng/smj/v60/i1/p37
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Borovkov, “Rasprostranenie printsipa invariantnosti dlya obobschennykh protsessov vosstanovleniya na oblasti umerenno bolshikh i malykh uklonenii”, Teoriya veroyatn. i ee primen., 65:4 (2020), 651–670
|
Number of views: |
This page: | 211 | Full text: | 20 | References: | 28 | First page: | 12 |
|