|
Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least $4$
M. V. Kuznetsov Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
Using the extension method, we study the one-parameter symmetry groups of the heat equation $\partial_{t} p=\Delta p$, where $\Delta=X_{1}^{2}+X_{2}^{2}$ is the sub-Laplacian constructed by a Goursat distribution $\operatorname{span} (\lbrace X_{1},X_{2} \rbrace)$ in $\mathbb{R}^n$, where the vector fields $X_1$ and $X_2$ satisfy the commutation relations $[X_{1},X_{j}]=X_{j+1}$ (where $X_{n+1}=0$) and $[X_{j},X_{k}]=0$ for $j \geq 1$ and $k \geq 1$. We show that there are no such groups for $n \geq 4$ (with exception of the linear transformations of solutions which are admitted by every linear equation).
Keywords:
sub-Laplacian, nilpotent Lie group, extension method.
DOI:
https://doi.org/10.33048/smzh.2019.60.112
Full text:
PDF file (292 kB)
References:
PDF file
HTML file
English version:
Siberian Mathematical Journal, 2019, 60:1, 108–113
Bibliographic databases:
UDC:
512.813.52+514.763.85
MSC: 35R30 Received: 09.04.2018 Revised: 18.07.2018 Accepted:17.10.2018
Citation:
M. V. Kuznetsov, “Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least $4$”, Sibirsk. Mat. Zh., 60:1 (2019), 141–147; Siberian Math. J., 60:1 (2019), 108–113
Citation in format AMSBIB
\Bibitem{Kuz19}
\by M.~V.~Kuznetsov
\paper Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least~$4$
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 1
\pages 141--147
\mathnet{http://mi.mathnet.ru/smj3065}
\crossref{https://doi.org/10.33048/smzh.2019.60.112}
\elib{https://elibrary.ru/item.asp?id=38682396}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 1
\pages 108--113
\crossref{https://doi.org/10.1134/S0037446619010129}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000464720000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065232358}
Linking options:
http://mi.mathnet.ru/eng/smj3065 http://mi.mathnet.ru/eng/smj/v60/i1/p141
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 225 | Full text: | 8 | References: | 14 | First page: | 10 |
|