RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 1989, Volume 30, Number 1, Pages 82–88 (Mi smj3546)  

This article is cited in 3 scientific papers (total in 3 papers)

Nilpotent groups of finite algorithmic dimension

S. S. Goncharov, A. V. Molokov, N. S. Romanovskii


Full text: PDF file (561 kB)

English version:
Siberian Mathematical Journal, 1989, 30, 63–68

Bibliographic databases:

UDC: 517.15
Received: 15.10.1986

Citation: S. S. Goncharov, A. V. Molokov, N. S. Romanovskii, “Nilpotent groups of finite algorithmic dimension”, Sibirsk. Mat. Zh., 30:1 (1989), 82–88; Siberian Math. J., 30 (1989), 63–68

Citation in format AMSBIB
\Bibitem{GonMolRom89}
\by S.~S.~Goncharov, A.~V.~Molokov, N.~S.~Romanovskii
\paper Nilpotent groups of finite algorithmic dimension
\jour Sibirsk. Mat. Zh.
\yr 1989
\vol 30
\issue 1
\pages 82--88
\mathnet{http://mi.mathnet.ru/smj3546}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0995021}
\zmath{https://zbmath.org/?q=an:0684.20025}
\transl
\jour Siberian Math. J.
\yr 1989
\vol 30
\pages 63--68
\crossref{https://doi.org/10.1007/BF01054216}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=WOS:A1989CA57600008}


Linking options:
  • http://mi.mathnet.ru/eng/smj3546
  • http://mi.mathnet.ru/eng/smj/v30/i1/p82

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. T. Kogabaev, “The theory of projective planes is complete with respect to degree spectra and effective dimensions”, Algebra and Logic, 54:5 (2015), 387–407  mathnet  crossref  crossref  mathscinet  isi
    2. N. T. Kogabaev, “Freely generated projective planes with finite computable dimension”, Algebra and Logic, 55:6 (2017), 461–484  mathnet  crossref  crossref  isi
    3. S. S. Goncharov, R. Miller, V. S. Kharizanova, “Tyuringovy stepeni polnykh formul pochti prostykh modelei”, Algebra i logika, 58:3 (2019), 417–425  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020