Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 1967, Volume 8, Number 2, Pages 243–256 (Mi smj5376)  

This article is cited in 2 scientific papers (total in 2 papers)

Conditions for existence of the classical solution of the wave equation

O. V. Besov


Full text: PDF file (1263 kB)

English version:
Siberian Mathematical Journal, 1967, 8:2, 179–203

Bibliographic databases:

UDC: 517.246
Received: 02.12.1965

Citation: O. V. Besov, “Conditions for existence of the classical solution of the wave equation”, Sibirsk. Mat. Zh., 8:2 (1967), 243–256; Siberian Math. J., 8:2 (1967), 179–203

Citation in format AMSBIB
\Bibitem{Bes67}
\by O.~V.~Besov
\paper Conditions for existence of the classical solution of the wave equation
\jour Sibirsk. Mat. Zh.
\yr 1967
\vol 8
\issue 2
\pages 243--256
\mathnet{http://mi.mathnet.ru/smj5376}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0216179}
\zmath{https://zbmath.org/?q=an:0146.33501}
\transl
\jour Siberian Math. J.
\yr 1967
\vol 8
\issue 2
\pages 179--203
\crossref{https://doi.org/10.1007/BF02302471}


Linking options:
  • http://mi.mathnet.ru/eng/smj5376
  • http://mi.mathnet.ru/eng/smj/v8/i2/p243

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. “The List of Scientific Works of O. V. Besov”, Proc. Steklov Inst. Math., 243 (2003), 7–10  mathnet  mathscinet  zmath
    2. K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$”, Izv. Math., 73:4 (2009), 655–668  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:9
    Full text:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021